ZKW线段树 非递归版本的线段树
下面是支持区间修改和区间查询的zkw线段树模板,先记下来。
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <iomanip> #include <cstdlib> #include <cstdio> #include <string> #include <vector> #include <bitset> #include <cctype> #include <queue> #include <cmath> #include <list> #include <map> #include <set> //#include <unordered_map> //#include <unordered_set> //#include<ext/pb_ds/assoc_container.hpp> //#include<ext/pb_ds/hash_policy.hpp> using namespace std; //#pragma GCC optimize(3) //#pragma comment(linker, "/STACK:102400000,102400000") //c++ #define lson (l , mid , rt << 1) #define rson (mid + 1 , r , rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << "\n"; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; typedef pair<ll ,ll > pll; typedef pair<int ,int > pii; typedef pair<int ,pii> p3; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q //__gnu_pbds::cc_hash_table<int,int>ret[11]; //这是很快的hash_map #define fi first #define se second //#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0) #define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行 #define REP(i , j , k) for(int i = j ; i < k ; ++i) //priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFFLL; //2147483647 const ll nmos = 0x80000000LL; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3fLL; //18 const double PI=acos(-1.0); template<typename T> inline T read(T&x){ x=0;int f=0;char ch=getchar(); while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar(); while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar(); return x=f?-x:x; } /*-----------------------showtime----------------------*/ const int maxn = 100009; ll tree[maxn << 2],add[maxn<<2]; int N = 1,n,m;; void build(){ for(; N<=n+1; N<<=1); for(int i = N+1; i<=N+n; i++) scanf("%d", tree + i); for(int i = N-1; i>=1; i--) tree[i] = tree[i<<1] + tree[i<<1|1]; } void update(int s,int t,int k){ int lnum = 0,rnum = 0,num = 1; for(s = N + s -1, t = N + t + 1; s ^ t ^ 1; s>>=1,t>>=1,num<<=1){ tree[s] += 1ll * k * lnum; tree[t] += 1ll * k * rnum; if(~s & 1) { add[s ^ 1] += k; tree[s^1] += 1ll * k * num; lnum += num; } if(t&1) { add[t^1] += k; tree[t^1] += 1ll*k*num; rnum += num; } } for(; s; s>>=1,t>>=1){ tree[s] += 1ll*k * lnum; tree[t] += 1ll * k * rnum; } } ll query(int s,int t){ int lnum = 0,rnum = 0,num = 1; ll ans = 0; for(s=N+s-1,t=N+t+1; s ^ t ^ 1; s>>=1, t>>=1, num<<=1){ if(add[s]) ans += 1ll*add[s] * lnum; if(add[t]) ans += 1ll*add[t] * rnum; if(~s & 1){ans += 1ll*tree[s^1] ; lnum += num;} if(t & 1){ans += 1ll*tree[t ^ 1]; rnum += num;} } for(; s;s>>=1,t>>=1){ ans += 1ll*add[s] * lnum; ans += 1ll*add[t] * rnum; } return ans; } int main(){ scanf("%d%d", &n, &m); build(); for(int i=1; i<=m; i++){ int op; scanf("%d", &op); if(op == 1) { int l,r,k; scanf("%d%d%d", &l, &r, &k); update(l,r,k); } else { int l,r; scanf("%d%d", &l, &r); printf("%lld\n", query(l,r)); } } return 0; }
skr