HDU- 6437.Videos 最“大”费用流 -化区间为点
参考和完全学习:http://www.cnblogs.com/xcantaloupe/p/9519617.html
题意:
有m场电影,电影分为两种,看一场电影可以得到对应的快乐值。有k个人,一场电影只能一个人参加,并且如果时间允许可以连续观看,但是如果连续看的电影是同一类型的,就要把快乐值减去一个w,这个w是累计的。问如何安排,可以使得k个人的快乐值最大。
思路:
网络流问题建图真难。可以给每部电影当成一个点i,连一条从i到i+m 的边,容量为1,花费为对应的快乐值*-1,因为要求的是最大的“花费”,所以取反。再枚举点,如果时间允许,从i+m到j连一条边,若 i 和 j 类型相同,花费为w,否则为0。
这里把0点当做超级源点,m+m+1当做源点,从超级大源点到源点有k的容量,把m+m+2当做终点,就可以建图成功了。
(参考里拿的图)
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <iomanip> #include <cstdlib> #include <cstdio> #include <string> #include <vector> #include <bitset> #include <cctype> #include <queue> #include <cmath> #include <list> #include <map> #include <set> using namespace std; //#pragma GCC optimize(3) //#pragma comment(linker, "/STACK:102400000,102400000") //c++ #define lson (l , mid , rt << 1) #define rson (mid + 1 , r , rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << "\n"; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; typedef pair<ll ,ll > pll; typedef pair<int ,int > pii; typedef pair<int ,pii> p3; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0) #define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行 #define REP(i , j , k) for(int i = j ; i < k ; ++i) //priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFFLL; //2147483647 const ll nmos = 0x80000000LL; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3fLL; //18 const double PI=acos(-1.0); template<typename T> inline T read(T&x){ x=0;int f=0;char ch=getchar(); while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar(); while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar(); return x=f?-x:x; } // #define _DEBUG; //*// #ifdef _DEBUG freopen("input", "r", stdin); // freopen("output.txt", "w", stdout); #endif /*-----------------------show time----------------------*/ const int maxn = 1e5+9; struct Edge { int to,val,cost,nxt; }gEdge[maxn]; int gHead[maxn],gPre[maxn]; int gPath[maxn],gDist[maxn]; bool in[maxn]; int gcount = 0; int n,m,k,w; bool spfa(int s,int t){ memset(gPre, -1, sizeof(gPre)); memset(gDist,inf,sizeof(gDist)); memset(in, false , sizeof(in)); gDist[s] = 0; in[s] = true; queue<int>q; q.push(s); while(!q.empty()){ int u = q.front(); q.pop(); in[u] = false; for(int e = gHead[u]; e!=-1; e = gEdge[e].nxt){ int v = gEdge[e].to, w = gEdge[e].cost; if(gEdge[e].val > 0 && gDist[v] > gDist[u] + w){ gDist[v] = gDist[u] + gEdge[e].cost; gPre[v] = u; gPath[v] = e; if(!in[v]){ q.push(v);in[v] = true; } } } } if(gPre[t] == -1)return false; return true; } int MinCostFlow(int s,int t){ int cost = 0,flow = 0; while(spfa(s,t)){ int f = inf; for(int u = t; u != s; u = gPre[u]){ if(gEdge[gPath[u]].val < f){ f =gEdge[gPath[u]].val; } } flow += f; cost += gDist[t] * f; for(int u=t; u!=s; u = gPre[u]){ gEdge[gPath[u]].val -= f; gEdge[gPath[u] ^ 1].val += f; } } return cost; } void addedge(int u,int v,int val, int cost){ gEdge[gcount].to = v; gEdge[gcount].val = val; gEdge[gcount].cost = cost; gEdge[gcount].nxt = gHead[u]; gHead[u] = gcount++; gEdge[gcount].to = u; gEdge[gcount].val = 0; gEdge[gcount].cost = -cost; gEdge[gcount].nxt = gHead[v]; gHead[v] = gcount++; } struct eee { int l,r,w,op; }e[maxn]; /* 0 是大源点,m+m+1是ci源点,m+m+2是终点。 */ void solve(){ memset(gHead,-1,sizeof(gHead)); gcount = 0; scanf("%d%d%d%d", &n, &m, &k, &w); addedge(0,m+m+1,k,0); for(int i=1; i<=m; i++){ scanf("%d%d%d%d", &e[i].l, &e[i].r, &e[i].w, &e[i].op); } for(int i=1; i<=m; i++){ for(int j=1; j<=m; j++){ if(i==j)continue; if(e[i].r <= e[j].l){ int tmp; if(e[i].op == e[j].op)tmp = w; else tmp = 0; addedge(i+m,j,1,tmp); } } } for(int i=1; i<=m; i++){ addedge(i,i+m,1,-e[i].w); addedge(i+m, m+m+2,1,0); addedge(m+m+1, i,1,0); } printf("%d\n",-1*MinCostFlow(0,m+m+2)); } int main(){ int T; scanf("%d", &T); while(T--){ solve(); } return 0; }
skr