HDU-3507Print Article 斜率优化DP
学习:https://blog.csdn.net/bill_yang_2016/article/details/54667902
题意:有若干个单词,每个单词有一个费用,连续的单词组合成一块有花费:(∑Ci)^2+M,问如何分单词,使得这些花费和最小。
思路:dp,但是由于数据n = 5e5,所以需要利用斜率优化dp,维护一个下凸包。
大佬的分析:http://www.cnblogs.com/ka200812/archive/2012/08/03/2621345.html;
#include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #include <string> #include <vector> #include <map> #include <set> #include <queue> #include <list> #include <cstdlib> #include <iterator> #include <cmath> #include <iomanip> #include <bitset> #include <cctype> #include <deque> using namespace std; #define lson (l , mid , rt << 1) #define rson (mid + 1 , r , rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << "\n"; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; typedef pair<ll ,ll > pll; typedef pair<int ,int > pii; #define fi first #define se second #define OKC ios::sync_with_stdio(false);cin.tie(0);cout.tie(0) #define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行 #define REP(i , j , k) for(int i = j ; i < k ; ++i) const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 template<typename T> inline T read(T&x){ x=0;int f=0;char ch=getchar(); while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar(); while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar(); return x=f?-x:x; } // #define _DEBUG; //*// #ifdef _DEBUG freopen("input", "r", stdin); // freopen("output.txt", "w", stdout); #endif /*-----------------show time----------------*/ const int maxn =500009; ll dp[maxn],a[maxn]; ll sum[maxn]; int q[maxn]; double slope(ll j, ll k ){ //计算斜率。 if(sum[k]==sum[j])return 0.0; return(dp[j] + 1ll*sum[j] * sum[j] - (dp[k] + 1ll*sum[k]*sum[k]) )*1.0/(2 * (sum[j] - sum[k])); } int main(){ int n,m; while(~scanf("%d%d", &n, &m)){ sum[0] = 0; for(int i=1; i<=n; i++){ scanf("%lld", &a[i]); sum[i] = sum[i-1] + a[i]; } int le = 1,ri = 1; q[1] = 0; dp[0] = 0; for(int i=1; i<=n; i++){ while(le < ri && slope(q[le] , q[le+1]) < sum[i]) le++; //维护不等式成立的条件 dp[i] = dp[q[le]] + 1ll*(sum[i] - sum[q[le]]) * (sum[i] - sum[q[le]]) + m; while(le < ri && slope(q[ri] , q[ri-1]) >= slope(q[ri],i))ri--;//斜率优化,删点。 q[++ri] = i; } printf("%lld\n", dp[n]); } return 0; }
skr