2019NC#8

题号标题已通过代码题解/讨论通过率团队的状态
A All-one Matrices 点击查看 单调栈+前缀和 326/2017  通过
B Beauty Values 点击查看 进入讨论 827/1995  通过
C CDMA 点击查看 进入讨论 669/1115  通过
D Distance 点击查看 理性暴力 37/554 OK
E Explorer 点击查看 可修改并查集,LCT 83/920 OK
F Flower Dance 点击查看 进入讨论 13/121 未通过
G Gemstones 点击查看 进入讨论 883/2062  通过
H How Many Schemes 点击查看 进入讨论 3/61 未通过
I Inner World 点击查看 dfs序,矩形面积 17/94 OK
J Just Jump 点击查看 DP,容斥 85/532 OK
 

 A - All-one Matrices

题意:

给定一个n × m的 01矩阵,输出极大全1子矩阵的个数。

思路:

先搞出每个点向下能走的距离。

利用单调栈维护每个点最左能到达的值,由于有相同的情况,所以要跑两次单调栈,

第一次求出每个点最左能到的地方。

第二次要弹栈的,判断是否能作为子矩阵的最上层,计入答案。

// #pragma GCC optimize(2)
// #pragma GCC optimize(3)
// #pragma GCC optimize(4)
#include <algorithm>
#include  <iterator>
#include  <iostream>
#include   <cstring>
#include   <cstdlib>
#include   <iomanip>
#include    <bitset>
#include    <cctype>
#include    <cstdio>
#include    <string>
#include    <vector>
#include     <stack>
#include     <cmath>
#include     <queue>
#include      <list>
#include       <map>
#include       <set>
#include   <cassert>
// #include<bits/extc++.h>
// using namespace __gnu_pbds;
using namespace std;
#define pb push_back
#define fi first
#define se second
#define debug(x) cerr<<#x << " := " << x << endl;
#define bug cerr<<"-----------------------"<<endl;
#define FOR(a, b, c) for(int a = b; a <= c; ++ a)

typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;

const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9+7;

template<typename T>
inline T read(T&x){
    x=0;int f=0;char ch=getchar();
    while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
    while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x=f?-x:x;
}

/**********showtime************/

            const int maxn = 3009;
            char str[maxn][maxn];
            int sum[maxn][maxn];
            int dp[maxn][maxn];
            int ls[maxn];
            stack<pii>st;
int main(){
            int n,m;
            scanf("%d%d", &n, &m);
            for(int i=1; i<=n; i++) scanf("%s", str[i] + 1);
            for(int i=1; i<=n; i++) {
                for(int j=1; j<=m; j++) {
                    sum[i][j] = sum[i][j-1];
                    if(str[i][j] == '1') sum[i][j] ++;
                }
            }

            for(int i=n; i>=1; i--) {
                for(int j=1; j<=m; j++) {
                    if(str[i][j] == '1') dp[i][j] = dp[i+1][j] + 1;
                    else dp[i][j] = 0;
                }
            }

            int ans = 0;
            for(int i=1; i<=n; i++) {
//                debug(i);
                while(!st.empty()) st.pop();
                st.push(pii(-1, 0));
                for(int j=1; j<=m; j++) {
                        while(!st.empty() && st.top().fi >= dp[i][j]) {
                            st.pop();
                        }
                        ls[j] = st.top().se + 1;
                        st.push(pii(dp[i][j], j));
                }
                while(!st.empty()) st.pop();
                 for(int j=1; j<=m + 1; j++) {
                    while(!st.empty() && st.top().fi > dp[i][j]) {
                        int le = ls[st.top().se], ri = j - 1;
                        st.pop();
                        if(sum[i-1][ri] - sum[i-1][le-1] == ri - le + 1) continue;
                        ans++;
                    }
                    if(j < m + 1 && (st.empty() || dp[i][j] > st.top().fi) )st.push(pii(dp[i][j], j));
                }

            }
            printf("%d\n", ans);
            return 0;
}
/*
5 5
11111
11110
11100
11100
10000
3 6
001000
011011
010011

*/
View Code

 

D-Distance

思路

考虑非情况,如果点数不多,就枚举点数,如果点数很多,就把这么多点的影响通过bfs记录下来。

/*
* @Author: chenkexing
* @Date:   2019-08-11 21:48:52
* @Last Modified by:   chenkexing
* @Last Modified time: 2019-08-11 23:23:57
*/

// #pragma GCC optimize(2)
// #pragma GCC optimize(3)
// #pragma GCC optimize(4)
#include <algorithm>
#include  <iterator>
#include  <iostream>
#include   <cstring>
#include   <cstdlib>
#include   <iomanip>
#include    <bitset>
#include    <cctype>
#include    <cstdio>
#include    <string>
#include    <vector>
#include     <stack>
#include     <cmath>
#include     <queue>
#include      <list>
#include       <map>
#include       <set>
#include   <cassert>
// #include<bits/extc++.h>
// using namespace __gnu_pbds;
using namespace std;
#define pb push_back
#define fi first
#define se second
#define debug(x) cerr<<#x << " := " << x << endl;
#define bug cerr<<"-----------------------"<<endl;
#define FOR(a, b, c) for(int a = b; a <= c; ++ a)

typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<int, pii> p3;
typedef pair<ll, ll> pll;

const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9+7;

template<typename T>
inline T read(T&x){
    x=0;int f=0;char ch=getchar();
    while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
    while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x=f?-x:x;
}

/**********showtime************/

            const int maxn = 1e5+9;
            int n,m,h,q;
            int getid(int x, int y, int z) {
                return (z - 1)* (n * m) + (x-1)*m + y;
            }
            vector<int>vx,vy,vz;
            int dis[maxn];
            int xia[8][3] = {{0,0,1},{0,1,0},{1,0,0}, {-1, 0 ,0 }, {0, -1 ,0 }, {0, 0 ,-1 }};
            void rebuild(){
                queue< p3>que;
                for(int i=0; i<vx.size(); i++) {
                        int nx = vx[i];
                        int ny = vy[i];
                        int nz = vz[i];
                        dis[getid(nx, ny, nz)] = 0;
                        que.push(p3(nx, pii(ny, nz)));
                }
                vx.clear();
                vy.clear();
                vz.clear();
                while(!que.empty()) {
                    p3 tmp = que.front(); que.pop();
                    int x = tmp.fi;
                    int y = tmp.se.fi;
                    int z = tmp.se.se;
                    for(int i=0; i<6; i++) {
                        int nx = x + xia[i][0];
                        int ny = y + xia[i][1];
                        int nz = z + xia[i][2];
                        if(nx <= 0 || nx > n || ny <= 0|| ny > m || nz <= 0 || nz > h) continue;
                        if(dis[getid(nx, ny, nz)] > dis[getid(x, y, z)] + 1) {
                            dis[getid(nx, ny, nz)] = dis[getid(x, y, z)] + 1;
                            que.push(p3(nx, pii(ny, nz)));
                        }
                    }
                }

            }
int main(){
            scanf("%d%d%d%d", &n, &m, &h, &q);  
            int E = sqrt(n * m * h) + 1;
            memset(dis, inf, sizeof(dis));

            while(q--) {
                int op, x, y, z;
                scanf("%d%d%d%d", &op, &x, &y, &z);
                if(op == 1) {
                    vx.pb(x);
                    vy.pb(y);
                    vz.pb(z);
                }
                else {
                    int ans = dis[getid(x, y, z)];
                    for(int i=0; i<vx.size(); i++) {
                        int nx = vx[i];
                        int ny = vy[i];
                        int nz = vz[i];
                        ans = min(ans, abs(nx - x) + abs(ny - y) + abs(nz - z));
                    }
                    printf("%d\n", ans);
                }
                if(vx.size() >= E) rebuild();
            }
            return 0;
}
View Code

 

 

E - Explorer

可撤回的并查集

利用线段树优化

注意每次从左子树或者右子树回来的时候,都要进行清空。

// #pragma GCC optimize(2)
// #pragma GCC optimize(3)
// #pragma GCC optimize(4)
#include <algorithm>
#include  <iterator>
#include  <iostream>
#include   <cstring>
#include   <cstdlib>
#include   <iomanip>
#include    <bitset>
#include    <cctype>
#include    <cstdio>
#include    <string>
#include    <vector>
#include     <stack>
#include     <cmath>
#include     <queue>
#include      <list>
#include       <map>
#include       <set>
#include   <cassert>
// #include<bits/extc++.h>
// using namespace __gnu_pbds;
using namespace std;
#define pb push_back
#define fi first
#define se second
#define debug(x) cerr<<#x << " := " << x << endl;
#define bug cerr<<"-----------------------"<<endl;
#define FOR(a, b, c) for(int a = b; a <= c; ++ a)

typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;

const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9+7;

template<typename T>
inline T read(T&x){
    x=0;int f=0;char ch=getchar();
    while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
    while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x=f?-x:x;
}
const int N = 1e5+9;

/// 可撤回并查集模板
struct UFS {
    stack<pair<int*, int>> stk;
    int fa[N], rnk[N];
    inline void init(int n) {
        for (int i = 0; i <= n; ++i) fa[i] = i, rnk[i] = 0;
    }
    inline int Find(int x) {
        while(x^fa[x]) x = fa[x];
        return x;
    }
    inline void Merge(int x, int y) {
        x = Find(x), y = Find(y);
        if(x == y) return ;
        if(rnk[x] <= rnk[y]) {
            stk.push({fa+x, fa[x]});
            fa[x] = y;
            if(rnk[x] == rnk[y]) {
                stk.push({rnk+y, rnk[y]});
                rnk[y]++;
            }
        }
        else {
            stk.push({fa+y, fa[y]});
            fa[y] = x;
        }
    }
    inline void Undo() {
        *stk.top().fi = stk.top().se;
        stk.pop();
    }
}T;
/**********showtime************/
            const int maxn = 1e5+9;
            int n,m;
            struct E{
                int u, v, le, ri;
                void init(int U, int V, int Le, int Ri) {
                    u = U; v = V;
                    le = Le; ri = Ri;
                }
            } edge[maxn];

            vector<int>vec;
            int getid(int x) {
                return lower_bound(vec.begin(), vec.end(), x) - vec.begin() + 1;
            }

            vector <int> node[maxn * 8];
            int sz[maxn * 8];
            void update(int L, int R, int id, int le, int ri, int rt) {
                if(le >= L && ri <= R) {
                    node[rt].pb(id);
                    return;
                }
                int mid = (le + ri) >> 1;
                if(mid >= L) update(L, R, id, le, mid, rt<<1);
                if(mid < R) update(L, R, id, mid+1, ri, rt<<1|1);
            }
            ll ans = 0;
            
            void dfs(int le, int ri, int rt) {
                for(int id : node[rt]) {
                    T.Merge(edge[id].u, edge[id].v);
                }
                int sz = T.stk.size();
                if(le == ri) {
                    if(T.Find(1) == T.Find(n)) {
//                        cout<<ri<<endl;
                        ans += vec[ri] - vec[le-1];
                    }

                    return;
                }
                int mid = (le + ri) >> 1;
                dfs(le, mid, rt<<1);
                while(T.stk.size() > sz) {
                    T.Undo();
                }
                dfs(mid+1, ri, rt<<1|1);
                while(T.stk.size() > sz) {
                    T.Undo();
                }
            }
int main(){
            scanf("%d%d", &n, &m);
            T.init(n);
            for(int i=1; i<=m; i++) {
                int u,v,le,ri;
                scanf("%d%d%d%d", &u, &v, &le, &ri);
                edge[i].init(u, v, le, ri+1);
                vec.pb(le);
                vec.pb(ri + 1);
            }
            sort(vec.begin(), vec.end());
            vec.erase(unique(vec.begin(), vec.end()), vec.end());
            int tot = vec.size();
            for(int i=1; i<=m; i++) {
                int l = getid(edge[i].le);
                int r = getid(edge[i].ri) - 1;
//                cout<<l<<" " << r << endl;
                update(l, r, i, 1, tot-1, 1);
            }
            ans = 0;
            dfs(1, tot-1, 1);
            printf("%lld\n", ans);
            return 0;
}
View Code

 

I - Inner World

先把n个子树看成一颗树,相同的点合并到一起,附加一个区间信息就行了。

然后利用dfs序+前缀和的思想处理询问即可

// #pragma GCC optimize(2)
// #pragma GCC optimize(3)
// #pragma GCC optimize(4)
#include <algorithm>
#include  <iterator>
#include  <iostream>
#include   <cstring>
#include   <cstdlib>
#include   <iomanip>
#include    <bitset>
#include    <cctype>
#include    <cstdio>
#include    <string>
#include    <vector>
#include     <stack>
#include     <cmath>
#include     <queue>
#include      <list>
#include       <map>
#include       <set>
#include   <cassert>
// #include<bits/extc++.h>
// using namespace __gnu_pbds;
using namespace std;
#define pb push_back
#define fi first
#define se second
#define debug(x) cerr<<#x << " := " << x << endl;
#define bug cerr<<"-----------------------"<<endl;
#define FOR(a, b, c) for(int a = b; a <= c; ++ a)

typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;

const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f;
const int mod = 998244353;

template<typename T>
inline T read(T&x){
    x=0;int f=0;char ch=getchar();
    while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
    while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x=f?-x:x;
}
/**********showtime************/

            const int maxn = 3e5+9;

            int le[maxn],ri[maxn];
            vector<int>mp[maxn];
            int id[maxn], dfn[maxn], tim = 0, sz[maxn];
            void dfs(int u) {
                dfn[u] = ++tim;
                id[tim] = u;
                sz[u] = 1;
                for(int v : mp[u]) {
                    dfs(v);
                    sz[u] += sz[v];
                }
            }
            struct node{
                int le, ri, id, op;
                node(int Le, int Ri, int Id, int Op){
                    le = Le; ri = Ri; id = Id; op = Op;
                }
            };
            vector<node> g[maxn];
            ll ans[maxn];
            struct TT{
                ll sum[maxn<<2], lazy[maxn<<2];
                void pushdown(int le, int ri, int rt) {
                    lazy[rt<<1] += lazy[rt];
                    lazy[rt<<1|1] += lazy[rt];
                    int mid = (le + ri) >> 1;
                    sum[rt<<1] += 1ll*lazy[rt] * (mid - le + 1);
                    sum[rt<<1|1] += 1ll*lazy[rt] * (ri - mid);
                    lazy[rt] = 0;
                }
                void update(int L, int R, int c, int le, int ri, int rt) {
                    if(le >= L && ri <= R) {
                        sum[rt] += 1ll * c * (ri - le + 1);
                        lazy[rt] += 1ll * c;
                        return ;
                    }
                    int mid = (le + ri) >> 1;
                    if(lazy[rt]) pushdown(le , ri, rt);
                    if(L <= mid) update(L, R, c, le, mid, rt<<1);
                    if(mid < R) update(L, R, c, mid+1, ri, rt<<1|1);
                    sum[rt] = sum[rt<<1] + sum[rt<<1|1];
                }
                ll query(int L, int R, int le, int ri, int rt) {
                    if(le >= L && ri <= R) {
                        return sum[rt];
                    }
                    int mid = (le + ri) >> 1;
                    if(lazy[rt]) pushdown(le, ri, rt);
                    ll res = 0;
                    if(L <= mid) res += query(L, R, le, mid, rt<<1);
                    if(mid < R) res += query(L, R, mid+1, ri,rt<<1|1);
                    return res;
                }
            } tree;
int main(){
            int n,m;
            scanf("%d%d", &n, &m);
            le[1] = 1, ri[1] = n;
            for(int i=1; i<=m; i++) {
                int u,v,l,r;
                scanf("%d%d%d%d", &u, &v, &l, &r);
                mp[u].pb(v);
                le[v] = l, ri[v] = r;
            }
            int N = m + 1;
            ///dfs序,将一个点的子树表示成一个区间
            dfs(1);

            int q;  scanf("%d", &q);
            for(int i=1; i<=q; i++) {
                int u, le, ri;
                scanf("%d%d%d", &u, &le, &ri);
                int t1 = dfn[u] - 1;
                ///将一次询问拆成两次操作,类似于把区间和改为前缀和相减
                g[t1].pb(node(le, ri, i, -1));
                g[t1 + sz[u]].pb(node{le, ri, i, 1});
            }

            for(int i=1; i<=tim; i++) {
                int u = id[i];
                tree.update(le[u], ri[u], 1, 1, n, 1);
                ///因为是二维面积,所以要用线段树等数据结构维护前缀和
                for(node a : g[i]) {
                    ans[a.id] += 1ll * a.op * tree.query(a.le, a.ri, 1, n, 1);
                }
            }

            for(int i=1; i<=q; i++) printf("%lld\n", ans[i]);
            return 0;
}
/*
4 3
1 2 1 2
1 3 2 4
3 4 2 3
2
1 1 4
3 1 4
*/
View Code

 

J - Just Jump

由于有m个限制,我们就计算出m个对应点不合法方案的个数。

这里要利用容斥,第i个点不合法的方案要减去之前就不合法的点转移过来的方案。

然后dp转移。

 O($m ^ 2 + n$)的复杂度

 从一个点x转移到y,走p步,每步长度要大于t,的方案数。可以转化为小球放入盒子中的问题。

设x到y之间有n个点,

就可以转化为有n个小球,分到p个盒子中,每个盒子至少要有t个小球。

那么我们先安排每个盒子t个小球。

那么剩下的$ n - t \times p$个小球放入盒子中,盒子可以为空。

这个怎么做呢,我们利用隔板法,多放入$ n - t \times p$个盒子,选出 p - 1个盒子作为隔板即可。

$\dbinom{n - p \times t + p - 1}{p-1}$

 

// #pragma GCC optimize(2)
// #pragma GCC optimize(3)
// #pragma GCC optimize(4)
#include <algorithm>
#include  <iterator>
#include  <iostream>
#include   <cstring>
#include   <cstdlib>
#include   <iomanip>
#include    <bitset>
#include    <cctype>
#include    <cstdio>
#include    <string>
#include    <vector>
#include     <stack>
#include     <cmath>
#include     <queue>
#include      <list>
#include       <map>
#include       <set>
#include   <cassert>
// #include<bits/extc++.h>
// using namespace __gnu_pbds;
using namespace std;
#define pb push_back
#define fi first
#define se second
#define debug(x) cerr<<#x << " := " << x << endl;
#define bug cerr<<"-----------------------"<<endl;
#define FOR(a, b, c) for(int a = b; a <= c; ++ a)

typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;

const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f;
const int mod = 998244353;

template<typename T>
inline T read(T&x){
    x=0;int f=0;char ch=getchar();
    while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
    while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x=f?-x:x;
}
/**********showtime************/
            const int maxn=1e7+10;
            ll A[maxn];
            ll B[maxn];
            ll quick(int x,int n){
                ll ans=1;
                while(n){
                    if(n&1) ans=1ll*ans*x%mod;
                    x=1ll*x*x%mod;
                    n=n/2;
                }
                return ans;
            }
            void init(){
                int n=maxn-1;
                A[0]=1; B[0]=1;
                for(int i=1;i<=n;i++) A[i]=1ll*A[i-1]*i%mod;
                B[n]=quick(A[n],mod-2);
                for(int i=n-1;i>=1;i--) B[i]=1ll*B[i+1]*(i+1)%mod;
            }
            ll CC(ll n,ll x){
                if(x>n) return 0;
                return 1ll*A[n]*B[n-x]%mod*B[x]%mod;
            }
            ll dp[maxn];
            ll s[3009], sum[maxn];
            pii a[3009];
int main(){
            init();
//            debug(CC(500, 1));
            int L,d,m;
            scanf("%d%d%d", &L, &d, &m);
            for(int i=1; i<=m; i++) {
                scanf("%d%d", &a[i].se, &a[i].fi);
            }
            sort(a + 1, a + 1 + m);
            for(int i=1; i<=m; i++) {
                ll pos = a[i].fi, t = a[i].se;
                s[i] = CC(pos - t * d + t - 1, t - 1);
//                cout<<s[i]<<" ";
                for(int j=1; j<i; j++){
                    if(a[j].fi < a[i].fi && a[j].se < a[i].se) {
                        ll prepos = a[j].fi, pret = a[j].se;
                        ll n = pos - prepos, tt = t - pret;
                        s[i] = (s[i] - 1ll*s[j] * CC(n - tt * d + tt - 1, tt - 1)%mod + mod) % mod;
                    }
                }

                dp[pos] =((dp[pos] - s[i])% mod + mod) % mod;
            }
//            cout<<endl;
            dp[0] = 1;
            sum[0] = 1;
            for(int i=1; i<=L; i++) {
                if(i-d >= 0) dp[i] += sum[i-d];
                dp[i] = dp[i] % mod;
                sum[i] = (sum[i-1] + dp[i]) % mod;
//                cout<<dp[i]<<" ";
            }
//            cout<<endl;
            printf("%lld\n", dp[L]);
            return 0;
}
/*
5 2 4
1 2
2 5
2 8
2 9
*/
View Code

 

posted @ 2019-08-10 22:42  ckxkexing  阅读(210)  评论(0编辑  收藏  举报