P2059 [JLOI2013]卡牌游戏 概率DP
link:https://www.luogu.org/problemnew/show/P2059
题意:
有$n$个人,类似约瑟夫环的形式踢人,但是报的数是不同的,是在给定的许多数中随机抽取,问最后第$i$个人赢的概率;
思路:
假设$dp[i][j]$,表示剩下$i$个人,从庄家后第$j$个人在本轮不被淘汰的概率。
首先枚举庄家抽到的卡牌$k$,得到这一轮被淘汰的人的位置$c$。如果$c==j$,就不要考虑了(因为这表示此轮第$j$个人被淘汰)。
而第$c$个人被淘汰之后,剩下的$i−1$个人要组成一个新的环,庄家为第$c$个人的下一个。容易算出,当$c>j$时,第$j$个人是新的环里从新庄家数起的第$i−c+j$个人,当$c<j$时,第$j$个人是新的环里从新庄家数起的第$j−c$个人。
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <bitset> #include <cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> using namespace std; #define lson (l, mid, rt << 1) #define rson (mid + 1, r, rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << "\n"; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; //typedef __int128 bll; typedef pair<ll, ll> pll; typedef pair<int, int> pii; typedef pair<int, pii> p3; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl '\n' #define boost \ ios::sync_with_stdio(false); \ cin.tie(0) #define rep(a, b, c) for (int a = (b); a <= (c); ++a) #define max3(a, b, c) max(max(a, b), c); #define min3(a, b, c) min(min(a, b), c); const ll oo = 1ll << 17; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 const int mod = 1e9 + 7; const double esp = 1e-8; const double PI = acos(-1.0); const double PHI = 0.61803399; //黄金分割点 const double tPHI = 0.38196601; template <typename T> inline T read(T &x) { x = 0; int f = 0; char ch = getchar(); while (ch < '0' || ch > '9') f |= (ch == '-'), ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x = f ? -x : x; } inline void cmax(int &x, int y) { if (x < y) x = y; } inline void cmax(ll &x, ll y) { if (x < y) x = y; } inline void cmin(int &x, int y) { if (x > y) x = y; } inline void cmin(ll &x, ll y) { if (x > y) x = y; } /*-----------------------showtime----------------------*/ const int maxn = 55; int p[maxn]; double dp[maxn][maxn]; int main() { int n, m; scanf("%d%d", &n, &m); rep(i, 1, m) scanf("%d", &p[i]); dp[1][0] = 1.0; for (int i = 2; i <= n; i++) { // for(int s = 0; s <i; s++){ for (int j = 0; j < i; j++) { for (int t = 1; t <= m; t++) { int dx = (p[t] - 1) % i; if (dx == j) continue; if (dx > j) { dp[i][j] += dp[i - 1][i - dx + j - 1] * 1.0 / m; } else dp[i][j] += dp[i - 1][j - dx - 1] * 1.0 / m; } } // } } for (int i = 1; i <= n; i++) printf("%.2f%% ", 100 * dp[n][i - 1]); return 0; }
skr