P2486 [SDOI2011]染色 维护区间块数 树链剖分
题意
在树上维护两种操作,一种是把$x$到$y$间的点都染成$c$色,另一种是求$x$到$y$间的点有多少个颜色块,比如112221由“11”,“222”,“1”三块组成。
思路
这题的关键是要如何维护这个颜色块,我们可以利用线段树,记录每个区间的块数,区间左端点,区间右端点的颜色。合并中如果两个区间相邻点颜色相同,个数要减去1.
查询也是一样的,链与链间的相邻点也要考虑清楚。
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <bitset> #include <cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> using namespace std; #define lson (l, mid, rt << 1) #define rson (mid + 1, r, rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << "\n"; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; //typedef __int128 bll; typedef pair<ll, ll> pll; typedef pair<int, int> pii; typedef pair<int, pii> p3; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl '\n' #define boost \ ios::sync_with_stdio(false); \ cin.tie(0) #define rep(a, b, c) for (int a = (b); a <= (c); ++a) #define max3(a, b, c) max(max(a, b), c); #define min3(a, b, c) min(min(a, b), c); const ll oo = 1ll << 17; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 const ll mod = 2147483648; const double esp = 1e-8; const double PI = acos(-1.0); const double PHI = 0.61803399; //黄金分割点 const double tPHI = 0.38196601; template <typename T> inline T read(T &x) { x = 0; int f = 0; char ch = getchar(); while (ch < '0' || ch > '9') f |= (ch == '-'), ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x = f ? -x : x; } inline void cmax(int &x, int y) { if (x < y) x = y; } inline void cmax(ll &x, ll y) { if (x < y) x = y; } inline void cmin(int &x, int y) { if (x > y) x = y; } inline void cmin(ll &x, ll y) { if (x > y) x = y; } /*-----------------------showtime----------------------*/ const int maxn = 1e5 + 9; int a[maxn], b[maxn]; int dp[maxn], sz[maxn], fa[maxn], son[maxn]; vector<int> mp[maxn]; void dfs1(int u, int f, int deep) { dp[u] = deep; fa[u] = f; sz[u] = 1; int mx = 0; for (int i = 0; i < mp[u].size(); i++) { int v = mp[u][i]; if (v == f) continue; dfs1(v, u, deep + 1); sz[u] += sz[v]; if (sz[v] > mx) { mx = sz[v], son[u] = v; } } } int top[maxn], id[maxn], cnt = 0; void dfs2(int u, int f, int topf) { top[u] = topf; id[u] = ++cnt; b[cnt] = a[u]; if (son[u]) dfs2(son[u], u, topf); for (int i = 0; i < mp[u].size(); i++) { int v = mp[u][i]; if (v == f || v == son[u]) continue; dfs2(v, u, v); } } int tag[maxn << 2], lazy[maxn << 2], ly[maxn << 2], rz[maxn << 2]; void pushup(int rt) { tag[rt] = tag[rt << 1] + tag[rt << 1 | 1]; rz[rt] = rz[rt << 1]; ly[rt] = ly[rt << 1 | 1]; if (ly[rt << 1] == rz[rt << 1 | 1]) tag[rt]--; } void build(int l, int r, int rt) { if (l == r) { tag[rt] = 1; ly[rt] = rz[rt] = b[l]; return; } int mid = (l + r) >> 1; build(l, mid, rt << 1); build(mid + 1, r, rt << 1 | 1); pushup(rt); // cout<<l<<" "<<r<<" "<<rz[rt] << " " << ly[rt]<<endl; } void pushdown(int l, int r, int rt) { tag[rt << 1] = tag[rt << 1 | 1] = 1; ly[rt << 1] = rz[rt << 1] = lazy[rt]; ly[rt << 1 | 1] = rz[rt << 1 | 1] = lazy[rt]; lazy[rt << 1] = lazy[rt << 1 | 1] = lazy[rt]; lazy[rt] = 0; } void update(int L, int R, int c, int l, int r, int rt) { if (l >= L && r <= R) { tag[rt] = 1; ly[rt] = rz[rt] = c; lazy[rt] = c; return; } int mid = (l + r) >> 1; if (lazy[rt]) pushdown(l, r, rt); if (mid >= L) update(L, R, c, l, mid, rt << 1); if (mid < R) update(L, R, c, mid + 1, r, rt << 1 | 1); pushup(rt); } int n, m; void solve(int x, int y, int c) { while (top[x] != top[y]) { if (dp[top[x]] < dp[top[y]]) swap(x, y); update(id[top[x]], id[x], c, 1, n, 1); x = fa[top[x]]; } if (dp[x] > dp[y]) swap(x, y); update(id[x], id[y], c, 1, n, 1); } int query(int L, int R, int l, int r, int rt, int &tmpl, int &tmpr) { if (l >= L && r <= R) { if (l == L) tmpl = rz[rt]; if (r == R) tmpr = ly[rt]; return tag[rt]; } int mid = (l + r) >> 1; if (lazy[rt]) pushdown(l, r, rt); int res = 0; int ql = -1, qr = -1; if (mid >= L) { res += query(L, R, l, mid, rt << 1, tmpl, tmpr); ql = ly[rt << 1]; } if (mid < R) { res += query(L, R, mid + 1, r, rt << 1 | 1, tmpl, tmpr); qr = rz[rt << 1 | 1]; } if (ql == qr && ql != -1) res--; pushup(rt); return res; } int cal(int x, int y) { int res = 0, lax = -1, lay = -1; while (top[x] != top[y]) { int tmpl = -1, tmpr = -1; if (dp[top[x]] > dp[top[y]]) { res += query(id[top[x]], id[x], 1, n, 1, tmpl, tmpr); //tmp,flag 1,r if (lax == tmpr) res--; lax = tmpl; x = fa[top[x]]; } else { res += query(id[top[y]], id[y], 1, n, 1, tmpl, tmpr); if (lay == tmpr) res--; lay = tmpl; y = fa[top[y]]; } // cout<<tmpl<<" !! "<<tmpr<<endl; } if (dp[x] > dp[y]) { int tmpl = -1, tmpr = -1; res += query(id[y], id[x], 1, n, 1, tmpl, tmpr); if (tmpr == lax) res--; if (tmpl == lay) res--; } else { int tmpl = -1, tmpr = -1; res += query(id[x], id[y], 1, n, 1, tmpl, tmpr); if (tmpl == lax) res--; if (tmpr == lay) res--; } return res; } int main() { scanf("%d%d", &n, &m); rep(i, 1, n) scanf("%d", &a[i]); rep(i, 1, n - 1) { int u, v; scanf("%d%d", &u, &v); mp[u].pb(v); mp[v].pb(u); } dfs1(1, 1, 1); dfs2(1, 1, 1); build(1, n, 1); while (m--) { char str[5]; scanf("%s", str); if (str[0] == 'C') { int x, y, z; scanf("%d%d%d", &x, &y, &z); solve(x, y, z); } else { int x, y; scanf("%d%d", &x, &y); printf("%d\n", cal(x, y)); } } return 0; }
skr