P3384 【模板】树链剖分
注意
自己理解着打了一遍,注意两个点跳跃的时候,是比较两个点对应链顶的深度
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <bitset> #include <cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> using namespace std; #define lson (l, mid, rt << 1) #define rson (mid + 1, r, rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << "\n"; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; //typedef __int128 bll; typedef pair<ll, ll> pll; typedef pair<int, int> pii; typedef pair<int, pii> p3; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl '\n' #define boost \ ios::sync_with_stdio(false); \ cin.tie(0) #define rep(a, b, c) for (int a = (b); a <= (c); ++a) #define max3(a, b, c) max(max(a, b), c); #define min3(a, b, c) min(min(a, b), c); const ll oo = 1ll << 17; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 const ll mod = 2147483648; const double esp = 1e-8; const double PI = acos(-1.0); const double PHI = 0.61803399; //黄金分割点 const double tPHI = 0.38196601; template <typename T> inline T read(T &x) { x = 0; int f = 0; char ch = getchar(); while (ch < '0' || ch > '9') f |= (ch == '-'), ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x = f ? -x : x; } inline void cmax(int &x, int y) { if (x < y) x = y; } inline void cmax(ll &x, ll y) { if (x < y) x = y; } inline void cmin(int &x, int y) { if (x > y) x = y; } inline void cmin(ll &x, ll y) { if (x > y) x = y; } /*-----------------------showtime----------------------*/ const int maxn = 1e6 + 9; int n, m, R, P; int a[maxn]; vector<int> mp[maxn]; int dp[maxn], fa[maxn], son[maxn], sz[maxn]; void dfs1(int u, int f, int deep) { int mx = 0; dp[u] = deep; sz[u] = 1; fa[u] = f; for (int i = 0; i < mp[u].size(); i++) { int v = mp[u][i]; if (f == v) continue; dfs1(v, u, deep + 1); sz[u] += sz[v]; if (sz[v] > mx) son[u] = v, mx = sz[v]; } } int b[maxn]; int id[maxn], top[maxn]; int cnt = 0; void dfs2(int u, int f, int topf) { id[u] = ++cnt; top[u] = topf; b[cnt] = a[u]; if (son[u]) dfs2(son[u], u, topf); for (int i = 0; i < mp[u].size(); i++) { int v = mp[u][i]; if (f == v || son[u] == v) continue; dfs2(v, u, v); } } int sum[maxn << 2], lazy[maxn << 2]; void build(int l, int r, int rt) { if (l == r) { sum[rt] = b[l]; return; } int mid = (l + r) >> 1; build(l, mid, rt << 1); build(mid + 1, r, rt << 1 | 1); sum[rt] = (sum[rt << 1] + sum[rt << 1 | 1]) % P; } void pushdown(int l, int r, int rt) { int mid = (l + r) >> 1; lazy[rt << 1] = (lazy[rt << 1] + lazy[rt]) % P; lazy[rt << 1 | 1] = (lazy[rt << 1 | 1] + lazy[rt]) % P; sum[rt << 1] = (sum[rt << 1] + (mid - l + 1) * lazy[rt]) % P; sum[rt << 1 | 1] = (sum[rt << 1 | 1] + (r - mid) * lazy[rt]) % P; lazy[rt] = 0; } void update(int L, int R, int val, int l, int r, int rt) { if (l >= L && r <= R) { lazy[rt] = (lazy[rt] + val) % P; sum[rt] = (sum[rt] + (r - l + 1) * val) % P; return; } int mid = (l + r) >> 1; if (lazy[rt]) pushdown(l, r, rt); if (mid >= L) update(L, R, val, l, mid, rt << 1); if (mid < R) update(L, R, val, mid + 1, r, rt << 1 | 1); sum[rt] = (sum[rt << 1] + sum[rt << 1 | 1]) % P; } int query(int L, int R, int l, int r, int rt) { if (l >= L && r <= R) { return sum[rt]; } int res = 0; int mid = (l + r) >> 1; if (lazy[rt]) pushdown(l, r, rt); if (mid >= L) res = (res + query(L, R, l, mid, rt << 1)) % P; if (mid < R) res = (res + query(L, R, mid + 1, r, rt << 1 | 1)) % P; sum[rt] = (sum[rt << 1] + sum[rt << 1 | 1]) % P; return res; } void add1(int x, int y, int z) { while (top[x] != top[y]) { if (dp[top[x]] < dp[top[y]]) swap(x, y); update(id[top[x]], id[x], z, 1, n, 1); x = fa[top[x]]; } if (dp[x] > dp[y]) swap(x, y); update(id[x], id[y], z, 1, n, 1); } int getsum1(int x, int y) { int res = 0; while (top[x] != top[y]) { if (dp[top[x]] < dp[top[y]]) swap(x, y); res = (res + query(id[top[x]], id[x], 1, n, 1)) % P; x = fa[top[x]]; } if (dp[x] > dp[y]) swap(x, y); res = (res + query(id[x], id[y], 1, n, 1)) % P; return res; } void add2(int x, int z) { update(id[x], id[x] + sz[x] - 1, z, 1, n, 1); } int getsum2(int x) { return query(id[x], id[x] + sz[x] - 1, 1, n, 1); } int main() { scanf("%d%d%d%d", &n, &m, &R, &P); rep(i, 1, n) scanf("%d", &a[i]); rep(i, 1, n - 1) { int u, v; scanf("%d%d", &u, &v); mp[u].pb(v); mp[v].pb(u); } dfs1(R, R, 1); dfs2(R, R, R); build(1, n, 1); while (m--) { int op; scanf("%d", &op); if (op == 1) { int x, y, z; scanf("%d%d%d", &x, &y, &z); add1(x, y, z); } else if (op == 2) { int x, y; scanf("%d%d", &x, &y); printf("%d\n", getsum1(x, y)); } else if (op == 3) { int x, z; scanf("%d%d", &x, &z); add2(x, z); } else if (op == 4) { int x; scanf("%d", &x); printf("%d\n", getsum2(x)); } } return 0; }
skr