P2053 [SCOI2007]修车 费用流
题意
同一时刻有N位车主带着他们的爱车来到了汽车维修中心。维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的。现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最小。
说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。
思路
左边放n个点,表示n辆车。右边放m * n个点,表示m个工人,拆除n个点表示不同阶段。即如果第i辆车连上了第m个工人的第k个阶段,表示第m个工人第k阶段才修理第i辆车。
假设第i辆车的等待时间是wi
那么总等待时间是$n*w1 + (n-1)*w2 + …… + 1*wn$;
所以越早修理,需要的时间是多倍的。
$addedge(i, n + (j-1)*n + k, 1, mp[i][j] * (n - k + 1))$;
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <bitset> #include <cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> using namespace std; #define lson (l, mid, rt << 1) #define rson (mid + 1, r, rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << "\n"; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; //typedef __int128 bll; typedef pair<ll, ll> pll; typedef pair<int, int> pii; typedef pair<int, pii> p3; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl '\n' #define boost \ ios::sync_with_stdio(false); \ cin.tie(0) #define rep(a, b, c) for (int a = (b); a <= (c); ++a) #define max3(a, b, c) max(max(a, b), c); #define min3(a, b, c) min(min(a, b), c); const ll oo = 1ll << 17; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 const int mod = 1e9 + 7; const double esp = 1e-8; const double PI = acos(-1.0); const double PHI = 0.61803399; //黄金分割点 const double tPHI = 0.38196601; template <typename T> inline T read(T &x) { x = 0; int f = 0; char ch = getchar(); while (ch < '0' || ch > '9') f |= (ch == '-'), ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x = f ? -x : x; } inline void cmax(int &x, int y) { if (x < y) x = y; } inline void cmax(ll &x, ll y) { if (x < y) x = y; } inline void cmin(int &x, int y) { if (x > y) x = y; } inline void cmin(ll &x, ll y) { if (x > y) x = y; } /*-----------------------showtime----------------------*/ const int maxn = 609; struct E { int v, val; int cost; int nxt; } edge[80009]; int head[maxn], gtot = 0; void addedge(int u, int v, int val, int cost) { edge[gtot].v = v; edge[gtot].val = val; edge[gtot].cost = cost; edge[gtot].nxt = head[u]; head[u] = gtot++; edge[gtot].v = u; edge[gtot].val = 0; edge[gtot].cost = -cost; edge[gtot].nxt = head[v]; head[v] = gtot++; } int mp[maxn][maxn]; int dis[maxn], path[maxn], vis[maxn], pre[maxn]; bool spfa(int s, int t) { memset(pre, -1, sizeof(pre)); memset(dis, inf, sizeof(dis)); memset(vis, 0, sizeof(vis)); queue<int> que; que.push(s); vis[s] = 1; dis[s] = 0; while (!que.empty()) { int u = que.front(); que.pop(); vis[u] = 0; for (int i = head[u]; ~i; i = edge[i].nxt) { int v = edge[i].v, val = edge[i].val, cost = edge[i].cost; if (val > 0 && dis[v] > dis[u] + cost) { dis[v] = dis[u] + cost; pre[v] = u; path[v] = i; if (vis[v] == 0) { vis[v] = 1; que.push(v); } } } } return pre[t] != -1; } int mcmf(int s, int t) { int flow = 0, cost = 0; while (spfa(s, t)) { int f = inf; for (int i = t; i != s; i = pre[i]) { f = min(f, edge[path[i]].val); } flow += f; cost += f * dis[t]; for (int i = t; i != s; i = pre[i]) { edge[path[i]].val -= f; edge[path[i] ^ 1].val += f; } } return cost; } int main() { memset(head, -1, sizeof(head)); int n, m; scanf("%d%d", &m, &n); int s = 0, t = n + m * n + 1; rep(i, 1, n) { addedge(s, i, 1, 0); rep(j, 1, m) { scanf("%d", &mp[i][j]); } } for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { for (int t = 1; t <= n; t++) { addedge(i, n + (j - 1) * n + t, 1, mp[i][j] * (n - t + 1)); } } } for (int i = n + 1; i < t; i++) addedge(i, t, 1, 0); printf("%.2f\n", 1.0 * mcmf(s, t) / n); return 0; }
skr