P2746 [USACO5.3]校园网Network of Schools tarjan 缩点
题意
给出一个有向图,
A任务:求最少需要从几个点送入信息,使得信息可以通过有向图走遍每一个点
B任务:求最少需要加入几条边,使得有向图是一个强联通分量
思路
任务A,比较好想,可以通过tarjan缩点,求出入度为0的点的个数
任务B
一开始以为任务A,B没有关系
其实是入度为0的点的个数、出度为0的点的个数的最大值。
因为任务B要求在任意学校投放软件使得所有学校都能收到,所以很明显是需要整张图形成一个环,而环中所有节点入度和出度都不为0,所以需要把所有入度和出度的点度数增加。
(注意判断本身就全联通的情况
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <bitset> #include <cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> using namespace std; #define lson (l, mid, rt << 1) #define rson (mid + 1, r, rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << "\n"; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; //typedef __int128 bll; typedef pair<ll, ll> pll; typedef pair<int, int> pii; typedef pair<int, pii> p3; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl '\n' #define boost \ ios::sync_with_stdio(false); \ cin.tie(0) #define rep(a, b, c) for (int a = (b); a <= (c); ++a) #define max3(a, b, c) max(max(a, b), c); #define min3(a, b, c) min(min(a, b), c); const ll oo = 1ll << 17; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 const int mod = 1e9 + 7; const double esp = 1e-8; const double PI = acos(-1.0); const double PHI = 0.61803399; //黄金分割点 const double tPHI = 0.38196601; template <typename T> inline T read(T &x) { x = 0; int f = 0; char ch = getchar(); while (ch < '0' || ch > '9') f |= (ch == '-'), ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x = f ? -x : x; } inline void cmax(int &x, int y) { if (x < y) x = y; } inline void cmax(ll &x, ll y) { if (x < y) x = y; } inline void cmin(int &x, int y) { if (x > y) x = y; } inline void cmin(ll &x, ll y) { if (x > y) x = y; } /*-----------------------showtime----------------------*/ const int maxn = 109; vector<int> mp1[maxn], mp2[maxn]; int dfn[maxn], low[maxn], vis[maxn], col[maxn]; int dp[maxn][maxn], in[maxn]; stack<int> st; int tot = 0, nn = 0; void tarjan(int u) { dfn[u] = low[u] = ++tot; st.push(u); vis[u] = 1; for (int i = 0; i < mp1[u].size(); i++) { int v = mp1[u][i]; if (dfn[v] == 0) { tarjan(v); low[u] = min(low[u], low[v]); } else if (vis[v]) { low[u] = min(low[u], dfn[v]); } } if (low[u] == dfn[u]) { nn++; while (!st.empty()) { int x = st.top(); st.pop(); col[x] = nn; vis[x] = 0; if (x == u) break; } } } int main() { int n; scanf("%d", &n); rep(i, 1, n) { int x; while (~scanf("%d", &x) && x) mp1[i].pb(x); } rep(i, 1, n) if (!dfn[i]) tarjan(i); rep(i, 1, n) { int u = col[i]; for (int j = 0; j < mp1[i].size(); j++) { int v = col[mp1[i][j]]; dp[u][v] = 1; } } rep(i, 1, nn) { rep(j, 1, nn) { if (i == j) continue; if (dp[i][j]) mp2[i].pb(j), in[j]++; } } int ansa = 0, c1 = 0, c2 = 0; rep(i, 1, nn) { if (in[i] == 0) ansa++, c1++; if (mp2[i].size() == 0) c2++; } if (nn == 1) c1 = c2 = 0; printf("%d\n%d\n", ansa, max(c1, c2)); return 0; }
skr