P2805 [NOI2009]植物大战僵尸 + 最大权闭合子图 X 拓扑排序
传送门:https://www.luogu.org/problemnew/show/P2805
题意
有一个n * m的地图,你可以操纵僵尸从地图的右边向左边走,走的一些地方是有能量值的,有些地方会被一些植物保护起来不能走,只有先吃掉特定植物才能走一些地方。求最大可能拿到的能量值和
思路
最大权闭合子图,由于僵尸只能从一行的右边一步一步走到左边,所以每个格子向右边连一条inf的边(表示选了这个点,右边这个点必选),然后有保护的原因,从被保护的格子向保护的格子连一条inf的边。然后就是最大权闭合子图的操作,源点向正权值格子连容量为这个权值的边,负权值的格子向终点连容量为这个权值绝对值的边。
由于图中有环的存在,我们要把环上以及环之后的点都抹去。
然后跑一遍dinic(),算出最小割,用总的正权值 - 这个最小割就是答案。
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <bitset> #include <cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> using namespace std; #define lson (l, mid, rt << 1) #define rson (mid + 1, r, rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << "\n"; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; //typedef __int128 bll; typedef pair<ll, ll> pll; typedef pair<int, int> pii; typedef pair<int, pii> p3; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl '\n' #define boost \ ios::sync_with_stdio(false); \ cin.tie(0) #define rep(a, b, c) for (int a = (b); a <= (c); ++a) #define max3(a, b, c) max(max(a, b), c); #define min3(a, b, c) min(min(a, b), c); const ll oo = 1ll << 17; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 const int mod = 1e9 + 7; const double esp = 1e-8; const double PI = acos(-1.0); const double PHI = 0.61803399; //黄金分割点 const double tPHI = 0.38196601; template <typename T> inline T read(T &x) { x = 0; int f = 0; char ch = getchar(); while (ch < '0' || ch > '9') f |= (ch == '-'), ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x = f ? -x : x; } inline void cmax(int &x, int y) { if (x < y) x = y; } inline void cmax(ll &x, ll y) { if (x < y) x = y; } inline void cmin(int &x, int y) { if (x > y) x = y; } inline void cmin(ll &x, ll y) { if (x > y) x = y; } /*-----------------------showtime----------------------*/ const int maxn = 609; int val[maxn], vis[maxn], du[maxn]; vector<int> mp[maxn]; vector<pii> ptt[maxn]; //受保护的点。 int n, m; void topo() { queue<int> que; for (int i = 1; i <= n * m; i++) { if (du[i] == 0) que.push(i); } while (!que.empty()) { int u = que.front(); que.pop(); vis[u] = 1; for (int i = 0; i < mp[u].size(); i++) { int v = mp[u][i]; du[v]--; if (du[v] == 0) que.push(v); } } } struct E { int v, w; int nxt; } edge[500009]; int gtot = 0, head[maxn]; void addedge(int u, int v, int w) { edge[gtot].v = v; edge[gtot].w = w; edge[gtot].nxt = head[u]; head[u] = gtot++; edge[gtot].v = u; edge[gtot].w = 0; edge[gtot].nxt = head[v]; head[v] = gtot++; } int dis[maxn], cur[maxn]; bool bfs(int s, int t) { memset(dis, inf, sizeof(dis)); dis[s] = 0; queue<int> que; que.push(s); for (int i = s; i <= t; i++) cur[i] = head[i]; while (!que.empty()) { int u = que.front(); que.pop(); for (int i = head[u]; ~i; i = edge[i].nxt) { int v = edge[i].v, w = edge[i].w; if (w > 0 && dis[v] > dis[u] + 1) { dis[v] = dis[u] + 1; que.push(v); } } } return dis[t] < inf; } int dfs(int u, int t, int maxflow) { if (u == t || maxflow == 0) return maxflow; for (int i = cur[u]; ~i; i = edge[i].nxt) { cur[u] = i; int v = edge[i].v, w = edge[i].w; if (w > 0 && dis[v] == dis[u] + 1) { int f = dfs(v, t, min(w, maxflow)); if (f > 0) { edge[i].w -= f; edge[i ^ 1].w += f; return f; } } } return 0; } int dinic(int s, int t) { int flow = 0; while (bfs(s, t)) { while (int f = dfs(s, t, inf)) flow += f; } return flow; } int main() { memset(head, -1, sizeof(head)); scanf("%d%d", &n, &m); for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { int u = (i - 1) * m + j, v = u + 1; scanf("%d", &val[u]); if (j < m) { du[u]++; mp[v].pb(u); //v -> u } int q; scanf("%d", &q); while (q--) { int x, y; scanf("%d%d", &x, &y); x++, y++; int p = (x - 1) * m + y; du[p]++; mp[u].pb(p); ptt[u].pb(pii(x, y)); } } } int s = 0, t = n * m + 1; topo(); int sum = 0; for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { int u = (i - 1) * m + j, v = u + 1; if (vis[u] == 0) continue; if (j < m && vis[v]) addedge(u, v, inf); if (val[u] >= 0) addedge(s, u, val[u]), sum += val[u]; else addedge(u, t, -1 * val[u]); for (int k = 0; k < ptt[u].size(); k++) { int x = ptt[u][k].fi, y = ptt[u][k].se; int p = (x - 1) * m + y; addedge(p, u, inf); } } } printf("%d\n", sum - dinic(s, t)); return 0; }
skr