洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP
)逼着自己写DP
题意:
给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小。
思路:
先处理出每一行每个格子到前面n个格子中的最大值和最小值。然后对每一列求出长度为n的前面算出来的最大值的最大值,前面算出来的最小值的最小值。如果直接做是n的三次方,但是用单调队列优化后就是n方的。
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <bitset> #include <cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> using namespace std; #define lson (l , mid , rt << 1) #define rson (mid + 1 , r , rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << "\n"; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; //typedef __int128 bll; typedef pair<ll ,ll > pll; typedef pair<int ,int > pii; typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0) #define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行 #define REP(i , j , k) for(int i = j ; i < k ; ++i) #define max3(a,b,c) max(max(a,b), c); #define min3(a,b,c) min(min(a,b), c); //priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 const int mod = 1e8+7; const double esp = 1e-8; const double PI=acos(-1.0); const double PHI=0.61803399; //黄金分割点 const double tPHI=0.38196601; template<typename T> inline T read(T&x){ x=0;int f=0;char ch=getchar(); while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar(); while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar(); return x=f?-x:x; } /*-----------------------showtime----------------------*/ const int maxn = 1009; int mp[maxn][maxn]; int mx[maxn][maxn],mn[maxn][maxn]; deque<int>qmx,qmn; int main(){ int n,m,k; scanf("%d%d%d", &n, &m, &k); for(int i=1; i<=n; i++){ for(int j=1; j<=m; j++){ scanf("%d", &mp[i][j]); } } for(int i=1; i<=n; i++){ qmx.clear(); qmn.clear(); for(int j=1; j<=m; j++){ while(!qmx.empty() && mp[i][qmx.back()] <= mp[i][j]) qmx.pop_back(); qmx.push_back(j); while(!qmx.empty() && j - qmx.front() + 1 > k) qmx.pop_front(); mx[i][j] = mp[i][qmx.front()]; while(!qmn.empty() && mp[i][qmn.back()] >= mp[i][j]) qmn.pop_back(); qmn.push_back(j); while(!qmn.empty() && j - qmn.front() + 1 > k) qmn.pop_front(); mn[i][j] = mp[i][qmn.front()]; } } int ans = inf; for(int j=1; j<=m; j++){ qmx.clear(); qmn.clear(); for(int i=1; i<=n; i++){ while(!qmx.empty() && mx[qmx.back()][j] <= mx[i][j]) qmx.pop_back(); qmx.push_back(i); while(!qmx.empty() && i - qmx.front() + 1 > k) qmx.pop_front(); int tpmx = mx[qmx.front()][j]; while(!qmn.empty() && mn[qmn.back()][j] >= mn[i][j]) qmn.pop_back(); qmn.push_back(i); while(!qmn.empty() && i - qmn.front() + 1 > k) qmn.pop_front(); int tpmn = mn[qmn.front()][j]; if(i>=k&&j>=k) ans = min(ans, tpmx - tpmn); } } printf("%d\n", ans); return 0; }
skr