Redis 缓存穿透和雪崩
Redis缓存的使用,极大的提升了应用程序的性能和效率,特别是数据查询方面。但同时,它也代来也一些问题,其中,最要害的问题就是数据一致性的问题,从严格意义上讲,这个问题无解。如果对数据的一致性要求很高,那么就不能使用缓存。
另外的一些典型问题就是,缓存穿透、缓存雪崩和缓存击穿。目前,业界也有比较流行的结局方案。
缓存穿透(查不到):
- 概念:用户想要查询一个数据,发现redis内存数据库没有,也就是缓存没有命中,于是向持久层数据库查询。发现也没有,于是本次查询失败。当用户很多的时候,缓存都没有命中,于是都去请求了持久层数据库,这回给持久层数据库造成很大的压力,这时候机相当于出现了缓存穿透。
- 解决方案:
①布隆过滤器:一种数据结构,对所有可能查询的参数以hash形式存储,再控制层先进行校验,不符合则丢弃,从而避免了对底层存储系统的查询压力。
②缓存空对象:当存储层不命中后,即使返回的空对象也将其缓存起来,同时设置一个过期时间,之后再访问这个数据将从缓存中获取,保护了后端数据源。
缓存空对象方法回存在两个问题:
- 如果空值能够被缓存起来,这就意味着缓存需要更多的空间存储更多的键,因为这当中可能会有很多的空值的键。
- 即使对空值设置了过期时间,还是会存在缓存层和存储层的数据会有一段时间的不一致,这对于需要保持一致性的业务会有影响。
缓存击穿(量太大,缓存过期):
- 概念:缓存击穿是指一个key非常热点,在不停的扛着大并发,大并发集中对这一点进行访问,当这个key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在一个屏障上凿开 了一个洞。
当某个key在过期的瞬间,有大量的请求并发访问,这类数据一般是热点数据,由于缓存过期,会同时访问数据库来查询最新数据,并且回写缓存,会导致数据库瞬间压力过大。
- 解决方案:
① 设置热点数据永不过期:从缓存层面来看,没有设置过期时间,所以不会出现热点key过期后产生的问题。
②加互斥锁:分布式锁:使用分布式锁,保证对于每个key同时只有一个线程去查询后端服务,其他线程没有获得分布式做的权限,因此只需要等待即可。这种方式将高并发的压力转移到了分布式锁,因此对分布式锁的考验很大。
缓存雪崩:
- 概念:是指在某一个时间段,缓存集中过期失效。
产生雪崩的原因之一,比如在写本文的时候,马上就要到双十二零点,很快就会迎来一波抢购,这波商品时间比较集中的放入缓存,假设缓存一个小时,那么到了凌晨一点钟的时候,这批商品的缓存就都过期了,而对这批商品的访问查询,都落到了数据库上,对于数据库而言,就会产生周期性的压力波峰。于是所有的请求都会达到存储层,存储层的调用量会暴增,造成存储层也会挂掉的情况。
- 决绝方案:
① redis 高可用(异地多活)
② 限流降级
③ 数据预热
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 单线程的Redis速度为什么快?
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 展开说说关于C#中ORM框架的用法!