opencv python运动人体检测
采用非极大值抑制,将重叠的框合并成一个。
# import the necessary packages from imutils.object_detection import non_max_suppression import numpy as np import imutils import cv2 # initialize the HOG descriptor/person detector hog = cv2.HOGDescriptor() hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector()) cap = cv2.VideoCapture('img/test.mp4') # load the image and resize it to (1) reduce detection time # and (2) improve detection accuracy while True: ret, image = cap.read() # image = cv2.imread('img/test5.jpg') image = imutils.resize(image, width=min(400, image.shape[1])) orig = image.copy() # detect people in the image (rects, weights) = hog.detectMultiScale( image, winStride=(4, 4), padding=(8, 8), scale=1.05 ) # draw the original bounding boxes # for (x, y, w, h) in rects: # cv2.rectangle(orig, (x, y), (x + w, y + h), (0, 0, 255), 2) # # apply non-maxima suppression to the bounding boxes using a # # fairly large overlap threshold to try to maintain overlapping # # boxes that are still people # rects = np.array([[x, y, x + w, y + h] for (x, y, w, h) in rects]) pick = non_max_suppression(rects, probs=1, overlapThresh=0.15) # draw the final bounding boxes for (xA, yA, xB, yB) in pick: cv2.rectangle(image, (xA, yA), (xB, yB), (0, 255, 0), 2) # show the output images # cv2.imshow("Before NMS", orig) cv2.imshow("After NMS", image) if cv2.waitKey(1) & 0xFF == ord("q"): break