【BZOJ1434】[ZJOI2009]染色游戏(博弈论)
【BZOJ1434】[ZJOI2009]染色游戏(博弈论)
题面
题解
翻硬币的游戏我似乎原来在博客里面提到过,对于这类问题,当前局面的\(SG\)函数就是所有反面朝上的硬币单一存在时的\(SG\)函数的异或和。现在要考虑的是如何求解单一硬币存在于场上时的\(SG\)函数,这种东西。。。。打表吧。。。
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int lowbit(int x){return x&(-x);}
int getSG(int i,int j)
{
if(i&&j)return i+j;
return log2(lowbit(i+j+1));
}
int n,m,SG;char g[500];bool vis[500];
int main()
{
int T=read();
while(T--)
{
n=read();m=read();SG=0;
for(int i=0;i<n;++i)
{
scanf("%s",g);
for(int j=0;j<m;++j)
if(g[j]=='T')
vis[getSG(i,j)]^=1;
}
for(int i=0;i<n+m-1;++i)if(vis[i])SG=1;
puts(SG?"-_-":"=_=");
for(int i=0;i<n+m-1;++i)vis[i]=0;
}
return 0;
}