【BZOJ1296】[SCOI2009]粉刷匠(动态规划)
【BZOJ1296】[SCOI2009]粉刷匠(动态规划)
题面
题解
一眼题吧。
对于每个串做一次\(dp\),求出这个串刷若干次次能够达到的最大值,然后背包合并所有的结果即可。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MAX 55
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,m,T,ans,s[MAX];
char ch[MAX];
int g[MAX][MAX],ss[MAX][MAX];
int f[MAX][MAX*MAX];
int main()
{
n=read();m=read();T=read();
for(int i=1;i<=n;++i)
{
scanf("%s",ch+1);
memset(g,-63,sizeof(g));
for(int j=1;j<=m;++j)s[j]=s[j-1]+(ch[j]=='1');
g[0][0]=0;
for(int j=1;j<=m;++j)
for(int k=1;k<=j;++k)
for(int l=0;l<j;++l)
g[j][k]=max(g[j][k],g[l][k-1]+(ch[j]=='1'?s[j]-s[l]:(j-l-s[j]+s[l])));
for(int j=0;j<=m;++j)
for(int k=0;k<=j;++k)
ss[i][k]=max(ss[i][k],g[j][k]);
}
for(int i=1;i<=n;++i)
for(int j=0;j<=T&&j<=i*m-m;++j)
for(int k=0;k<=m;++k)
f[i][j+k]=max(f[i][j+k],f[i-1][j]+ss[i][k]);
for(int i=0;i<=T;++i)ans=max(ans,f[n][i]);
printf("%d\n",ans);
return 0;
}