【BZOJ4140】共点圆加强版(二进制分组)
【BZOJ4140】共点圆加强版(二进制分组)
题面
题解
我卡精度卡了一天。。。。
之前不强制在线的做法是\(CDQ\)分治,维护一个凸壳就好了。
现在改成二进制分组,每次重建凸壳就好了。。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 500500
#define Sqr(x) ((x)*(x))
#define pb push_back
struct Node{double x,y;}a[MAX];
bool operator<(Node a,Node b){if(a.x==b.x)return a.y<b.y;return a.x<b.x;}
inline double Slope(Node a,Node b)
{
if(a.x==b.x)return a.y>b.y?1e18:-1e18;
return (a.y-b.y)/(a.x-b.x);
}
int n,ans,top;
struct Group
{
vector<Node> p,Q;
int tot,tp;
void insert(Node x){++tot;p.pb(x);}
void clear(){p.clear();Q.clear();tot=tp=0;}
void Build()
{
sort(p.begin(),p.end());
tp=1;Q.clear();Q.pb(p[0]);
for(int i=1;i<tot;++i)
{
while(tp>1&&Slope(Q[tp-1],Q[tp-2])-Slope(Q[tp-1],p[i])>=0)--tp,Q.pop_back();
Q.pb(p[i]),++tp;
}
}
bool Query(double x,double y)
{
double k=-x/y;int l=1,r=tp-1,ret=0;
while(l<=r)
{
int mid=(l+r)>>1;
if(k>=Slope(Q[mid],Q[mid-1]))l=mid+1,ret=mid;
else r=mid-1;
}
return 2*x*Q[ret].x+2*y*Q[ret].y>=x*x+y*y;
}
}B[50];
void insert(double x,double y)
{
B[++top].insert((Node){x,y});
while(top>1&&B[top].tot==B[top-1].tot)
{
for(int i=0;i<B[top].tot;++i)
B[top-1].insert(B[top].p[i]);
B[top--].clear();
}
B[top].Build();
}
bool Query(double x,double y)
{
if(!top)return false;
for(int i=1;i<=top;++i)
if(!B[i].Query(x,y))return false;
return true;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;++i)
{
int opt;double x,y;
scanf("%d%lf%lf",&opt,&x,&y);
x+=ans;y+=ans;
if(!opt)insert(x,y);
else if(Query(x,y))++ans,puts("Yes");else puts("No");
}
return 0;
}