【BZOJ3294】放棋子(动态规划,容斥,组合数学)

【BZOJ3294】放棋子(动态规划,容斥,组合数学)

题面

BZOJ
洛谷

题解

如果某一行某一列被某一种颜色给占了,那么在考虑其他行的时候可以直接把这些行和这些列给丢掉。
那么我们就可以写出一个\(dp\)
\(f[i][r][c]\)表示考虑了前\(i\)种颜色,还剩下\(r\)\(c\)列没被染色。
那么转移的时候枚举一下当前颜色染了\(a\)\(b\)列转移就好了。
但是问题来了,怎么计算用\(K\)个棋子恰好覆盖\(a\)\(b\)列的方案数呢?
恰好很不好算,那么我们换一下,至多覆盖了\(a\)\(b\)列的方案数。
那么这个很容易算出来是\(C_{ab}^{K}\)
那么我们可以容斥计算恰好覆盖了\(a\)\(b\)列的方案数。
我们在计算\(a,b\)的时候就已经可以算出来恰好覆盖了\(l,l<a\)\(r,r<b\)列的方案数,
那么直接拿总数减去不合法的就好了。
接下来就是一个很简单的\(dp\)了,稍微用组合数算一下即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MOD 1000000009
#define MAX 35
inline int read()
{
    int x=0;bool t=false;char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=true,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return t?-x:x;
}
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int n,m,c,ans;
int f[MAX][MAX][MAX],a[MAX];
int jc[MAX*MAX],jv[MAX*MAX],inv[MAX*MAX];
int g[MAX][MAX][MAX];
int C(int n,int m){if(m>n)return 0;return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
	n=read();m=read();c=read();
	for(int i=1;i<=c;++i)a[i]=read();
	jc[0]=inv[0]=inv[1]=jv[0]=1;
	for(int i=1;i<=n*m;++i)jc[i]=1ll*jc[i-1]*i%MOD;
	for(int i=2;i<=n*m;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
	for(int i=1;i<=n*m;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
	for(int i=1;i<=c;++i)
		for(int j=1;j<=n;++j)
			for(int k=1;k<=m;++k)
			{
				if(j*k<a[i])continue;
				g[i][j][k]=C(j*k,a[i]);
				for(int l=1;l<=j;++l)
					for(int r=1;r<=k;++r)
						if(l!=j||r!=k)add(g[i][j][k],MOD-1ll*C(j,l)*C(k,r)%MOD*g[i][l][r]%MOD);
			}
	f[0][0][0]=1;
	for(int i=1;i<=c;++i)
		for(int j=1;j<=n;++j)
			for(int k=1;k<=m;++k)
				for(int a=1;a<=j;++a)
					for(int b=1;b<=k;++b)
						add(f[i][j][k],1ll*g[i][a][b]*f[i-1][j-a][k-b]%MOD*C(n-j+a,a)%MOD*(C(m-k+b,b))%MOD);
	for(int i=1;i<=n;++i)
		for(int j=1;j<=m;++j)add(ans,f[c][i][j]);
	printf("%d\n",ans);
	return 0;
}
						

posted @ 2018-08-03 21:54  小蒟蒻yyb  阅读(496)  评论(0编辑  收藏  举报