【CF487E】Tourists(圆方树)

【CF487E】Tourists(圆方树)

题面

UOJ

题解

首先我们不考虑修改,再来想想这道题目。

我们既然要求的是最小值,那么,在经过一个点双的时候,走的一定是具有较小权值的那一侧。

所以说,我们可以让所有的方点表示它所在的点双的最小权值,

这样子只需要对于圆方树树链剖分之后维护链的最小值就行了。

好的,回归带修改,无非是要动态的维护一下方点的最小权值了。

你问我怎么动态维护若干个值的最小值?搞个\(multiset\)不就好了吗?

但是,现在问题又来了,如果每次修改一个点的权值(这个点当然是圆点啦),

那么,必定会修改所有和它相邻的方点,如果是一个菊花树,然后我们拼命修改根节点,这样子复杂度就起飞了。

现在让我们打开脑洞,大力思考一下怎么办?

我们强行让方点的权值不包括它的父亲(也就是只算它的儿子)

如果求解的时候\(LCA\)是方点,则额外计算一下方点父亲的权值

这样子每个圆点在修改的之后只需要向上修改给父亲方点啦!

于是,我们得到了\(Tarjan\)+圆方树+树链剖分+线段树+\(multiset\)\(O(nlog^2n)\)的做法啦

(为什么要手写可删堆啊?\(multiset\)不好吗?)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 444444
#define lson (now<<1)
#define rson (now<<1|1)
inline int read()
{
    RG int x=0,t=1;RG char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=-1,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return x*t;
}
struct Line{int v,next;};
struct Link
{
	Line e[MAX<<1];
	int h[MAX],cnt;
	void Add(int u,int v)
	{
		e[++cnt]=(Line){v,h[u]};h[u]=cnt++;
		e[++cnt]=(Line){u,h[v]};h[v]=cnt++;
	}
}Gr,Tr;
multiset<int> MS[MAX];
int W[MAX];
int n,m,Q,Tot;
struct Graph
{
	int dfn[MAX],low[MAX],S[MAX],tim,top;
	void Tarjan(int u)
	{
		dfn[u]=low[u]=++tim;S[++top]=u;
		for(int i=Gr.h[u];i;i=Gr.e[i].next)
		{
			int v=Gr.e[i].v;
			if(!dfn[v])
			{
				Tarjan(v);low[u]=min(low[u],low[v]);
				if(low[v]>=dfn[u])
				{
					Tr.Add(++Tot,u);int x;
					do{x=S[top--];Tr.Add(Tot,x);}while(v!=x);
				}
			}
			else low[u]=min(low[u],dfn[v]);
		}
	}
}G;
struct SegMentTree
{
	int t[MAX<<2];
	void Modify(int now,int l,int r,int p,int w)
	{
		if(l==r){t[now]=w;return;}
		int mid=(l+r)>>1;
		if(p<=mid)Modify(lson,l,mid,p,w);
		else Modify(rson,mid+1,r,p,w);
		t[now]=min(t[lson],t[rson]);
	}
	int Query(int now,int l,int r,int L,int R)
	{
		if(L<=l&&r<=R)return t[now];
		int ret=1e9,mid=(l+r)>>1;
		if(L<=mid)ret=min(ret,Query(lson,l,mid,L,R));
		if(R>mid)ret=min(ret,Query(rson,mid+1,r,L,R));
		return ret;
	}
}SMT;
int fa[MAX],tim,dfn[MAX],low[MAX];
int size[MAX],hson[MAX],top[MAX],dep[MAX];
void dfs1(int u,int ff)
{
	fa[u]=ff;dep[u]=dep[ff]+1;size[u]=1;
	if(u<=n&&ff)MS[ff].insert(W[u]);
	for(int i=Tr.h[u];i;i=Tr.e[i].next)
	{
		int v=Tr.e[i].v;if(v==ff)continue;
		dfs1(v,u);size[u]+=size[v];
		if(size[v]>size[hson[u]])hson[u]=v;
	}
}
void dfs2(int u,int tp)
{
	top[u]=tp;dfn[u]=++tim;low[tim]=u;
	if(hson[u])dfs2(hson[u],tp);
	for(int i=Tr.h[u];i;i=Tr.e[i].next)
		if(Tr.e[i].v!=fa[u]&&Tr.e[i].v!=hson[u])
			dfs2(Tr.e[i].v,Tr.e[i].v);
}
int Query(int u,int v)
{
	int ret=1e9;
	while(top[u]^top[v])
	{
		if(dep[top[u]]<dep[top[v]])swap(u,v);
		ret=min(ret,SMT.Query(1,1,Tot,dfn[top[u]],dfn[u]));
		u=fa[top[u]];
	}
	if(dep[u]>dep[v])swap(u,v);
	ret=min(ret,SMT.Query(1,1,Tot,dfn[u],dfn[v]));
	if(u<=n)return ret;
	else return min(ret,W[fa[u]]);
}
void Modify(int u,int w)
{
	if(fa[u])
	{
		MS[fa[u]].erase(MS[fa[u]].find(W[u]));
		MS[fa[u]].insert(w);
		SMT.Modify(1,1,Tot,dfn[fa[u]],*MS[fa[u]].begin());
	}
	W[u]=w;SMT.Modify(1,1,Tot,dfn[u],w);
}
int main()
{
	Tot=n=read();m=read();Q=read();W[0]=1e9;
	for(int i=1;i<=n;++i)W[i]=read();
	for(int i=1;i<=m;++i)Gr.Add(read(),read());
	G.Tarjan(1);dfs1(1,0);dfs2(1,1);
	for(int i=1;i<=n;++i)SMT.Modify(1,1,Tot,dfn[i],W[i]);
	for(int i=n+1;i<=Tot;++i)SMT.Modify(1,1,Tot,dfn[i],*MS[i].begin());
	char ch[2];
	while(Q--)
	{
		scanf("%s",ch);
		int a=read(),b=read();
		if(ch[0]=='C')Modify(a,b);
		else printf("%d\n",Query(a,b));
	}
	return 0;
}

posted @ 2018-05-27 22:40  小蒟蒻yyb  阅读(1264)  评论(0编辑  收藏  举报