【BZOJ4316】小C的独立集(动态规划)

【BZOJ4316】小C的独立集(动态规划)

题面

BZOJ

题解

考虑树的独立集求法
\(f[i][0/1]\)表示\(i\)这个点一定不选,以及\(i\)这个点无所谓的最大值
转移\(f[u][0]=\sum f[v][1]\)\(f[u][1]=\sum f[v][0]\),\(f[u][1]=max(f[u][1],f[u][0])\)
现在放在了仙人掌上,
我们可以看做一棵树加上了若干不相交的返祖边
于是再加上一维\(f[u][0/1][0/1]\)
其中最后一维表示这条边所在的环的最底端的那个点一定不选,或者无所谓
赋初值:\(f[u][1][1]=1\),如果这个点不是所在环的最底端,\(f[u][1][0]=1\)
此时的转移:
1.两个点的底端点相同
这个时候我们先只考虑强制不选底端的转移
那么,\(f[u][1][0]+=f[v][1][1],f[u][1][1]+=f[v][1][0]\)
也就是上面裸的在树上的转移

2.两个点的底端点不同
既然跨越了环,意味着\(u\)就是这个环的底端点,\(v\)是它所在环的顶端点
那么,可以\(u\)\(v\)不选,因为跨越了环,所以对于\(v\)的底端点选择与否我们是不关心的
而第二维的\(1\)表示的\(u\)无所谓,后面的\(0\)则是强制不选择\(u\)
因此\(f[u][0][0]+=f[v][1][1]\)\(f[u][1][0]+=f[v][0][0]\)

3.\(v\)的顶端点不是\(u\)
意味着不用担心底端点产生的影响
所以\(f[u][0][1]+=f[v][1][1]\)\(f[u][1][1]+=f[v][0][1]\)

4.\(v\)的顶端点是\(u\)
此时要考虑底端点的贡献了
此时当前\(u\)不选,那就没有什么问题\(f[u][0][1]+=f[v][1][1]\)
当前\(u\)选择,强制不能选择底端点\(f[u][1][1]+=f[v][0][0]\)

好了,这样就讨论完了四种转移,然后就可以啦

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 55555
inline int read()
{
    RG int x=0,t=1;RG char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=-1,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return x*t;
}
struct Line{int v,next;}e[MAX*3];
int h[MAX],cnt=1,n,m;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int dep[MAX],fa[MAX];
int tp[MAX],un[MAX];
void dfs(int u,int ff)
{
	fa[u]=ff;dep[u]=dep[ff]+1;
	for(int i=h[u];i;i=e[i].next)
		if(!dep[e[i].v])dfs(e[i].v,u);
}
void jump(int u,int v){int x=v;while(x!=u)tp[x]=u,un[x]=v,x=fa[x];}
int f0[MAX],f1[MAX],g0[MAX],g1[MAX];
void dp(int u)
{
	f1[u]=1;
	if(u!=un[u])g1[u]=1;
	for(int i=h[u];i;i=e[i].next)
	{
		int v=e[i].v;if(dep[u]+1!=dep[v])continue;
		dp(v);
		if(un[u]!=un[v])g0[u]+=f1[v],g1[u]+=g0[v];
		else g0[u]+=g1[v],g1[u]+=g0[v];
		if(tp[v]!=u)f0[u]+=f1[v],f1[u]+=f0[v];
		else f0[u]+=f1[v],f1[u]+=g0[v];
	}
	f1[u]=max(f1[u],f0[u]);
	g1[u]=max(g1[u],g0[u]);
}
int main()
{
	n=read();m=read();
	for(int i=1;i<=m;++i)
	{
		int u=read(),v=read();
		Add(u,v);Add(v,u);
	}
	dfs(1,0);
	for(int u=1;u<=n;++u)
		for(int i=h[u];i;i=e[i].next)
			if(dep[u]<dep[e[i].v]&&fa[e[i].v]!=u)
				jump(u,e[i].v);
	dp(1);
	printf("%d\n",f1[1]);
	return 0;
}

posted @ 2018-05-25 16:27  小蒟蒻yyb  阅读(1059)  评论(2编辑  收藏  举报