【BZOJ4237】稻草人(CDQ分治,单调栈)

【BZOJ4237】稻草人(CDQ分治,单调栈)

题面

BZOJ

题解

\(CDQ\)分治好题呀
假设固定一个左下角的点
那么,我们可以找到的右下角长什么样子???

这里写图片描述

发现什么?
在右侧是一个单调递减的东西

那么,对于每一个已经固定好的左下角
我们可以通过单调栈来维护答案

既然只有左下角对右上角会产生贡献
那么,按照\(x\)轴排序之后可以\(CDQ\)分治

\(CDQ\)分治怎么搞?

如果在上面的基础上多了几个点。。
这里写图片描述

那几根棕色的线链接的连是不能贡献答案的
我们来看看:
这些点的\(y\)轴都在当前这个左下角的右上方那个左下角的上面
(这句话好晕呀。。。)

但是在那么点下面的右上角却是可行的

再来一个点试试。。

这里写图片描述

这个有点乱。。。

我们发现\(B\)点受到了\(A\)的限制
但是\(C\)点却没有任何限制
我们发现了什么关系?
\(B_x<A_x<C_x\)
也就是说和\(x\)坐标有关系

那么,其实这题已经很显然了
对于\(CDQ\)分治的左右两侧考虑贡献
首先按照\(y\)轴从上往下依次加点
右侧的用单调栈维护,使得\(x\)轴递增
而左侧要反过来,使得\(x\)轴递减
这样的话,每个左侧的点产生的贡献就会被单调栈中的前一个元素所影响
那么用前一个元素在右边的单调栈中二分一下就可以啦

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 222222
inline int read()
{
    RG int x=0,t=1;RG char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=-1,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return x*t;
}
int n;
struct Node{int x,y;}p[MAX];
bool operator<(Node a,Node b){return a.x<b.x;}
bool cmp(Node a,Node b){return a.y>b.y;}
ll ans;
int S[MAX],top;
int Q[MAX],H,T;
void CDQ(int l,int r)
{
	if(l==r)return;
	int mid=(l+r)>>1;
	CDQ(l,mid);CDQ(mid+1,r);
	sort(&p[l],&p[mid+1],cmp);
	sort(&p[mid+1],&p[r+1],cmp);
	int h=mid+1;top=0;T=0;
	for(int i=l;i<=mid;++i)
	{
		while(h<=r&&p[h].y>p[i].y)
		{
			while(top&&p[S[top]].x>p[h].x)--top;
			S[++top]=h++;
		}
		while(T&&p[Q[T]].x<p[i].x)--T;
		Q[++T]=i;
		if(T==1)
			ans+=top;
		else
		{
			int L=1,R=top,pls=top+1;
			while(L<=R)
			{
				int mid=(L+R)>>1;
				if(p[S[mid]].y>p[Q[T-1]].y)L=mid+1;
				else pls=mid,R=mid-1;
			}
			ans+=top-pls+1;
		}
	}
}
int main()
{
	n=read();
	for(int i=1;i<=n;++i)p[i].x=read(),p[i].y=read();
	sort(&p[1],&p[n+1]);
	CDQ(1,n);
	printf("%lld\n",ans);
	return 0;
}

posted @ 2018-02-05 19:31  小蒟蒻yyb  阅读(394)  评论(0编辑  收藏  举报