【Luogu3768】简单的数学题(莫比乌斯反演,杜教筛)

【Luogu3768】简单的数学题(莫比乌斯反演,杜教筛)

题面

洛谷

\[求\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j) \]

$ n<=10^9$

题解

很明显的把\(gcd\)提出来

\[\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^nij[gcd(i,j)==d] \]

习惯性的提出来

\[\sum_{d=1}^nd^3\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}ij[gcd(i,j)==1] \]

后面这玩意很明显的来一发莫比乌斯反演

\[\sum_{d=1}^nd^3\sum_{i=1}^{n/d}\mu(i)i^2(1+2+...[\frac{n}{id}])^2 \]

写起来好麻烦呀
我就设\(sum(x)=1+2+3+...x\)
\(T=id\)
提出来!

\[\sum_{T=1}^nsum(\frac{n}{T})^2\sum_{d|T}d^3\frac{T}{d}^2\mu(\frac{T}{d}) \]

有些\(d\)可以约掉

\[\sum_{T=1}^nsum(\frac{n}{T})^2T^2\sum_{d|T}d\mu(\frac{T}{d}) \]

现在如果把后面给筛出来
可以\(O(\sqrt n)\)求啦
现在,问题来了

\[T^2\sum_{d|T}d\mu(\frac{T}{d})$$怎么算?? 考虑一个式子: $$(id*\mu)(i)=\varphi(i)\]

也就是说,\(\mu\)\(id(x)=x\)的狄利克雷卷积等于\(\varphi(i)\)
太神奇啦!!!

所以说,

\[T^2\sum_{d|T}d\mu(\frac{T}{d})=T^2\varphi(T) \]

令$$f(i)=i^2\varphi(i)$$

\[S(n)=\sum_{i=1}^nf(i) \]

杜教筛套路的式子拿出来

\[g(1)S(n)=\sum_{i=1}^n(g*f)(i)-\sum_{i=2}^ng(i)S(\frac{n}{i}) \]

还是发现有\(\varphi(i)\)的项
想到$$\sum_{d|i}\varphi(d)=i$$
所以令\(g(x)=x^2\)
所以

\[S(n)=\sum_{i=1}^n(g*f)(i)-\sum_{i=2}^ng(i)S(\frac{n}{i}) \]

\[(g*f)(i)=\sum_{d|i}f(d)g(\frac{i}{d})=\sum_{d|i}d^2\varphi(d)\frac{i}{d}^2 \]

\[=i^2\sum_{d|i}\varphi(d)=i^3 \]

所以

\[S(n)=\sum_{i=1}^ni^3-\sum_{i=2}^ni^2S(\frac{n}{i}) \]

根据小学奥数的经验:
\(1^3+2^3+....n^3=(1+2+....n)^2=sum(n)^2\)

所以现在有:

\[ans=\sum_{T=1}^nsum(\frac{n}{T})^2\ T^2\sum_{d|T}d\mu(\frac{T}{d}) \]

前面可以数论分块
后面用杜教筛可以再非线性时间里面求出前缀和
这道题目就搞定啦

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
int MAX=8000000;
#define MAXN 8000000
#define ll long long
inline ll read()
{
	ll x=0,t=1;char ch=getchar();
	while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
	if(ch=='-')t=-1,ch=getchar();
	while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
	return x*t;
}
ll MOD,n,inv6,inv2;
int pri[MAXN],tot;
ll phi[MAXN+10];
bool zs[MAXN+10];
map<ll,ll> M;
ll fpow(ll a,ll b)
{
	ll s=1;
	while(b){if(b&1)s=s*a%MOD;a=a*a%MOD;b>>=1;}
	return s;
}
void pre()
{
	zs[1]=true;phi[1]=1;
	for(int i=2;i<=MAX;++i)
	{
		if(!zs[i])pri[++tot]=i,phi[i]=i-1;
		for(int j=1;j<=tot&&i*pri[j]<=MAX;++j)
		{
			zs[i*pri[j]]=true;
			if(i%pri[j])phi[i*pri[j]]=1ll*phi[i]*phi[pri[j]]%MOD;
			else{phi[i*pri[j]]=1ll*phi[i]*pri[j]%MOD;break;}
		}
	}
	for(int i=1;i<=MAX;++i)phi[i]=(phi[i-1]+1ll*phi[i]*i%MOD*i%MOD)%MOD;
}
ll Sum(ll x){x%=MOD;return x*(x+1)%MOD*inv2%MOD;}
ll Sump(ll x){x%=MOD;return x*(x+1)%MOD*(x+x+1)%MOD*inv6%MOD;}
ll SF(ll x)
{
	if(x<=MAX)return phi[x];
	if(M[x])return M[x];
	ll ret=Sum(x);ret=ret*ret%MOD;
	for(ll i=2,j;i<=x;i=j+1)
	{
		j=x/(x/i);
		ll tt=(Sump(j)-Sump(i-1))%MOD;
		ret-=SF(x/i)*tt%MOD;
		ret%=MOD;
	}
	return M[x]=(ret+MOD)%MOD;
}
int main()
{
	MOD=read();n=read();
	MAX=min(1ll*MAX,n);
	inv2=fpow(2,MOD-2);
	inv6=fpow(6,MOD-2);
	pre();
	ll ans=0;
	for(ll i=1,j;i<=n;i=j+1)
	{
		j=n/(n/i);
		ll tt=Sum(n/i);tt=tt*tt%MOD;
		ll gg=(SF(j)-SF(i-1))%MOD;
		ans+=gg*tt%MOD;
		ans%=MOD;
	}
	printf("%lld\n",(ans+MOD)%MOD);
	return 0;
}

posted @ 2018-01-16 19:13  小蒟蒻yyb  阅读(1270)  评论(4编辑  收藏  举报