【UVa11426】GCD - Extreme (II)(莫比乌斯反演)
【UVa11426】GCD - Extreme (II)(莫比乌斯反演)
题面
题解
这。。
直接套路的莫比乌斯反演
我连式子都不想写了
默认推到这里把。。
然后把\(ans\)写一下
\[ans=\sum_{d=1}^nd\sum_{i=1}^{n/d}\mu(i)[\frac{n}{id}]^2
\]
令\(T=id\)
然后把\(T\)提出来
\[ans=\sum_{T=1}^n[\frac{n}{T}]^2\sum_{d|T}d\mu(\frac{T}{d})
\]
后面那一堆东西直接线性筛
前面数论分块
单次询问复杂度\(O(\sqrt n)\)
最后别忘记题目求的是什么
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 4000000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
bool zs[MAX+10];
int pri[MAX+10],tot;
long long s[MAX+10];
void pre()
{
zs[1]=true;s[1]=1;
for(int i=2;i<=MAX;++i)
{
if(!zs[i])pri[++tot]=i,s[i]=i-1;
for(int j=1;j<=tot&&i*pri[j]<=MAX;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])s[i*pri[j]]=s[i]*s[pri[j]];
else{s[i*pri[j]]=s[i]*pri[j];break;}
}
}
for(int i=1;i<=MAX;++i)s[i]+=s[i-1];
}
int main()
{
pre();
while(233)
{
int n=read();
if(!n)break;
int i=1,j;
long long ans=-1ll*n*(n+1)/2;
while(i<=n)
{
j=n/(n/i);
ans+=1ll*(n/i)*(n/i)*(s[j]-s[i-1]);
i=j+1;
}
printf("%lld\n",ans/2);
}
return 0;
}