【BZOJ3130】费用流(最大流,二分)
【BZOJ3130】费用流(最大流,二分)
题面
Description
Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识。
最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量。一个合法的网络流方案必须满足:(1)每条边的实际流量都不超过其最大流量且非负;(2)除了源点S和汇点T之外,对于其余所有点,都满足该点总流入流量等于该点总流出流量;而S点的净流出流量等于T点的净流入流量,这个值也即该网络流方案的总运输量。最大流问题就是对于给定的运输网络,求总运输量最大的网络流方案。
上图表示了一个最大流问题。对于每条边,右边的数代表该边的最大流量,左边的数代表在最优解中,该边的实际流量。需要注意到,一个最大流问题的解可能不是唯一的。 对于一张给定的运输网络,Alice先确定一个最大流,如果有多种解,Alice可以任选一种;之后Bob在每条边上分配单位花费(单位花费必须是非负实数),要求所有边的单位花费之和等于P。总费用等于每一条边的实际流量乘以该边的单位花费。需要注意到,Bob在分配单位花费之前,已经知道Alice所给出的最大流方案。现茌Alice希望总费用尽量小,而Bob希望总费用尽量大。我们想知道,如果两个人都执行最优策略,最大流的值和总费用分别为多少。
Input
第一行三个整数N,M,P。N表示给定运输网络中节点的数量,M表示有向边的数量,P的含义见问题描述部分。为了简化问题,我们假设源点S是点1,汇点T是点N。
接下来M行,每行三个整数A,B,C,表示有一条从点A到点B的有向边,其最大流量是C。
Output
第一行一个整数,表示最大流的值。
第二行一个实数,表示总费用。建议选手输出四位以上小数。
Sample Input
3 2 1
1 2 10
2 3 15
Sample Output
10
10.0000
HINT
【样例说明】
对于Alice,最大流的方案是固定的。两条边的实际流量都为10。
对于Bob,给第一条边分配0.5的费用,第二条边分配0.5的费用。总费用
为:100.5+100.5=10。可以证明不存在总费用更大的分配方案。
【数据规模和约定】
对于20%的测试数据:所有有向边的最大流量都是1。
对于100%的测试数据:N < = 100,M < = 1000。
对于l00%的测试数据:所有点的编号在I..N范围内。1 < = 每条边的最大流
量 < = 50000。1 < = P < = 10。给定运输网络中不会有起点和终点相同的边。
题解
第一问不解释了
第二问,很显然的一点
如果是给定费用之和来分配费用
当然是把费用全部分配在流量最大的边上
现在问题便成为了:
在整张网络最大流不变的情况下
流量最大的边的流量最小是多少
最大值最小,考虑二分答案
每次限制最大流量
检查即可
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define INF 1000000000
#define MAX 500
#define MAXL 5000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line
{
int v,next;
double w;
}e[MAXL];
struct edge
{
int u,v;
double w;
}p[MAXL];
int h[MAX],cnt;
int ans,S,T,n,m,P;
inline void Add(int u,int v,double w)
{
e[cnt]=(Line){v,h[u],w};
h[u]=cnt++;
e[cnt]=(Line){u,h[v],0};
h[v]=cnt++;
}
int level[MAX];
int cur[MAX];
bool BFS()
{
memset(level,0,sizeof(level));
level[S]=1;
queue<int> Q;
Q.push(S);
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i!=-1;i=e[i].next)
{
int v=e[i].v;
if(e[i].w&&!level[v])
level[v]=level[u]+1,Q.push(v);
}
}
return level[T];
}
double DFS(int u,double flow)
{
if(flow==0||u==T)return flow;
double ret=0;
for(int &i=cur[u];i!=-1;i=e[i].next)
{
int v=e[i].v;
if(e[i].w&&level[v]==level[u]+1)
{
double dd=DFS(v,min(flow,e[i].w));
flow-=dd;ret+=dd;
e[i].w-=dd;e[i^1].w+=dd;
}
}
return ret;
}
double Dinic()
{
double ret=0;
while(BFS())
{
for(int i=S;i<=T;++i)cur[i]=h[i];
ret+=DFS(S,INF);
}
return ret;
}
void Build(double bb)
{
memset(h,-1,sizeof(h));cnt=0;
for(int i=1;i<=m;++i)
Add(p[i].u,p[i].v,min(p[i].w,bb));
}
int main()
{
n=read();m=read();P=read();
S=1;T=n;
for(int i=1;i<=m;++i)
{
int u=read(),v=read(),w=read();
p[i]=(edge){u,v,w};
}
Build(INF);
double G=Dinic();
printf("%d\n",(int)(G+0.5));
double l=0,r=1e9;
while(r-l>=1e-6)
{
double mid=(l+r)/2;
Build(mid);
if(fabs(Dinic()-G)<=1e-8)r=mid;
else l=mid;
}
printf("%.5lf\n",r*P);
return 0;
}