【洛谷1131】【ZJOI2007】时态同步

题面

题目描述

小Q在电子工艺实习课上学习焊接电路板。一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数字1,2,3….进行标号。电路板的各个节点由若干不相交的导线相连接,且对于电路板的任何两个节点,都存在且仅存在一条通路(通路指连接两个元件的导线序列)。

在电路板上存在一个特殊的元件称为“激发器”。当激发器工作后,产生一个激励电流,通过导线传向每一个它所连接的节点。而中间节点接收到激励电流后,得到信息,并将该激励电流传向与它连接并且尚未接收到激励电流的节点。最终,激烈电流将到达一些“终止节点”――接收激励电流之后不再转发的节点。

激励电流在导线上的传播是需要花费时间的,对于每条边e,激励电流通过它需要的时间为te,而节点接收到激励电流后的转发可以认为是在瞬间完成的。现在这块电路板要求每一个“终止节点”同时得到激励电路――即保持时态同步。由于当前的构造并不符合时态同步的要求,故需要通过改变连接线的构造。目前小Q有一个道具,使用一次该道具,可以使得激励电流通过某条连接导线的时间增加一个单位。请问小Q最少使用多少次道具才可使得所有的“终止节点”时态同步?

输入格式:

第一行包含一个正整数N,表示电路板中节点的个数。

第二行包含一个整数S,为该电路板的激发器的编号。

接下来N-1行,每行三个整数a , b , t。表示该条导线连接节点a与节点b,且激励电流通过这条导线需要t个单位时间。

输出格式:

仅包含一个整数V,为小Q最少使用的道具次数。

输入样例#1:

3
1
1 2 1
1 3 3

输出样例#1:

2

说明

对于40%的数据,N ≤ 1000

对于100%的数据,N ≤ 500000

对于所有的数据,te ≤ 1000000

题解

非常简单的一道题目(不要被省选题吓住了。。。)
因为所有的点连起来是一棵树
所以是树形DP(叫成递推是不是更好??)
我做了两遍DFS
第一遍求出dis[i],表示i节点到终止节点的最长时间
第二遍求解,f[i]表示当前节点的子树要完成时态同步所需要的最少道具个数
f[i]=sum(f[j]+dis[i]-dis[j]-len[i,j])
其中j是i的子节点,len[i,j]表示i,j这条边的长度

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAX=500100;
#define ll long long
inline ll read()
{
	  register ll x=0,t=1;
	  register char ch=getchar();
	  while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
	  if(ch=='-'){t=-1;ch=getchar();}
	  while(ch<='9'&&ch>='0'){x=x*10+ch-48;ch=getchar();}
	  return x*t;
}
struct Line
{
	  ll v,next,w;
}e[MAX];
ll h[MAX],cnt=1;
ll dis[MAX],f[MAX];
ll N,S;
inline void Add(ll u,ll v,ll w)
{
	  e[cnt]=(Line){v,h[u],w};
	  h[u]=cnt++;
}
void DFS(ll u,ll ff)//DFS求出到达终止节点的最长时间
{
	  for(ll i=h[u];i;i=e[i].next)
	  {
	  	    ll v=e[i].v;
	  	    if(v!=ff)
	  	    {
	  	    	   DFS(v,u);
	  	    	   dis[u]=max(dis[u],dis[v]+e[i].w);
	  	    }
	  }
}
//f[i]表示以i为根节点的子树达到时态同步所需要的最少道具 
void Get(ll u,ll ff)
{
	  for(ll i=h[u];i;i=e[i].next)
	  {
	  	      ll v=e[i].v;
	  	      if(v!=ff)
	  	      {
	  	      	     Get(v,u);
	  	      	     f[u]=f[u]+f[v]+dis[u]-dis[v]-e[i].w;
	  	      }
	  }
}
int main()
{
	  N=read();
	  S=read();
	  for(int i=1;i<N;++i)
	  {
	  	     ll u=read(),v=read(),w=read();
	  	     Add(u,v,w);
	  	     Add(v,u,w);
	  }
	  DFS(S,S); 
	  Get(S,S);//求解 
	  cout<<f[S]<<endl;
	  return 0;
}


posted @ 2017-07-20 15:52  小蒟蒻yyb  阅读(212)  评论(3编辑  收藏  举报