P2500 - 【DP合集】背包 bound

题面

Description

N 种物品,第 i 种物品有 s i 个,单个重量为 w i ,单个价值为 v i 。现有一个限重为 W 的背包,求能容 纳的物品的最大总价值。

Input

输入第一行二个整数 N , W ( N ≤ 1000 , M ≤ 10000) 。
接下来 N 行,每行三个整数 s i,w i,v i ,描述一种物品。

Output

输出一行一个整数,描述能容纳的物品的最大总价值。保证答案不会超过 231−1231−1 。

Sample Input

5 1000
4 20 80
9 50 40
7 50 30
6 30 40
1 20 20

Sample Output

1090

题解

多重背包的裸题
如果直接把每个物品拆成多个'1'的话会超时
需要用到二进制优化,
然后就转化成了01背包。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAX=1050;
int w[MAX*1000];//重量 
int v[MAX*1000];//价值
int f[MAX*1000];
int N,M,W,V,S,cnt=0; 
inline int read()
{
	  register int x=0,t=1;
	  register char ch=getchar();
	  while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
	  if(ch=='-'){t=-1;ch=getchar();}
	  while(ch<='9'&&ch>='0'){x=x*10+ch-48;ch=getchar();}
	  return x*t;
}
int main()
{
      N=read();M=read();
      for(int i=1;i<=N;++i)
      {
      	     S=read();W=read();V=read();
      	     for(int j=1;j<S;j<<=1)//多重背包二进制分解 
      	     {
      	     	    v[++cnt]=V*j;
      	     	    w[cnt]=W*j;
      	     	    S-=j;
      	     }
      	     v[++cnt]=S*V;
      	     w[cnt]=S*W;
      }
      N=cnt;//二进制分解之后转换为01背包
      //f[i]表示背包装了重量为i时的最大价值
	  //f[i]=max{f[i-W[j]]+v[j]} 
      //利用滚动数组节约内存 
	  for(int i=1;i<=N;++i)
	  {
	  	    for(int j=M;j>=w[i];--j)
	  	       f[j]=max(f[j],f[j-w[i]]+v[i]);
	  }
	  
	  printf("%d\n",f[M]);
	  return 0;
}

posted @ 2017-07-18 20:18  小蒟蒻yyb  阅读(289)  评论(0编辑  收藏  举报