【BZOJ4833】最小公倍佩尔数(min-max容斥)
【BZOJ4833】最小公倍佩尔数(min-max容斥)
题面
题解
首先考虑怎么求\(f(n)\),考虑递推这个东西
\((1+\sqrt 2)(e(n-1)+f(n-1)\sqrt 2)=e(n)+f(n)\sqrt 2\)
拆开之后可以得到:\(e(n)=e(n-1)+2f(n-1),f(n)=f(n-1)+e(n-1)\)。
把每一层的\(e\)都给展开,得到:\(\displaystyle f(n)=1+f(n-1)+2\sum_{i=1}^{n-2}f(i)\)
然后差分搞搞,\(\displaystyle f(n)-f(n-1)=f(n-1)-f(n-2)+2*f(n-2)\)。
得到\(f(n)=2f(n-1)+f(n-2)\),特殊的\(f(0)=0,f(1)=1\)。
然后我们发现要求\(lcm\),那么就先考虑\(f(a)\)和\(f(b)\)的\(gcd\)是什么。
这个东西显然可以类似斐波那契数列那样子利用辗转相减得到\(gcd(f(a),f(b))=f(gcd(a,b))\)。
接下来就可以考虑怎么求答案了。
然后\(lcm\)的式子是对于每个质因子,考虑其\(max\)。
考虑\(min-max\)容斥,把\(max\)变成\(min\),那么就可以从\(lcm\)变成\(gcd\)。
然后把\(min-max\)容斥的式子给写出来:
套到\(lcm\)上就是:
那么就有
上面那个指数看着就可以莫比乌斯反演一下之类的,然后令上面那一堆东西是\(a[i]\),然后令\(b[i]=\sum_{i|d}a[d]\)这个系数稍微推一下,得到:
这个值显然之和是否存在\(i\)倍数的数相关,存在就是\(1\),没有就是\(0\)。
而莫比乌斯反演可以得到
再把这个东西带回去
因为\(d\)的范围在\(n\)以内,所以必定存在\(d\)的倍数,所以\(b[d]=1\),那么只需要提前一个\(log\)预处理后面一半就行了。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 1000100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,MOD;
bool zs[MAX];
int pri[MAX],mu[MAX],tot;
int f[MAX],g[MAX],s[MAX],inv[MAX];
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
void Sieve(int n)
{
mu[1]=1;
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])mu[i*pri[j]]=-mu[i];
else{mu[i*pri[j]]=0;break;}
}
}
}
int main()
{
Sieve(MAX-1);
int T=read();
while(T--)
{
n=read();MOD=read();
f[1]=1;for(int i=2;i<=n;++i)f[i]=(2ll*f[i-1]+f[i-2])%MOD;
for(int i=1;i<=n;++i)s[i]=1,inv[i]=fpow(f[i],MOD-2);
for(int i=1;i<=n;++i)
for(int j=i;j<=n;j+=i)
if(mu[j/i]==1)s[j]=1ll*s[j]*f[i]%MOD;
else if(mu[j/i]==-1)s[j]=1ll*s[j]*inv[i]%MOD;
g[0]=1;for(int i=1;i<=n;++i)g[i]=1ll*g[i-1]*s[i]%MOD;
int ans=0;for(int i=1;i<=n;++i)ans=(ans+1ll*g[i]*i)%MOD;
printf("%d\n",ans);
}
}