【BZOJ3996】[TJOI2015]线性代数(最小割)
【BZOJ3996】[TJOI2015]线性代数(最小割)
题面
题解
首先把式子拆开,发现我们的答案式就是这个:
\[\sum_{i=1}^n\sum_{j=1}^n B_{i,j}A_iA_j-\sum_{i=1}^n A_iC_i
\]
发现\(A\)是\(01\)矩阵,再结合数据范围一脸一个最大权闭合子图的形式。
然后这里有两种做法,
第一种是无脑版本,对于每个\(B_{i,j}\)都建立一个新点。
第二种就手动解一下方程,点数稍微少点,边数一样。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define MAX 300000
const int inf=1e9;
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next,w;}e[MAX*10];
int h[MAX],cnt=2;
inline void Add(int u,int v,int w)
{
e[cnt]=(Line){v,h[u],w};h[u]=cnt++;
e[cnt]=(Line){u,h[v],0};h[v]=cnt++;
}
int S,T,level[MAX],cur[MAX];
bool bfs()
{
for(int i=S;i<=T;++i)level[i]=0;
queue<int> Q;Q.push(S);level[S]=1;
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i;i=e[i].next)
if(e[i].w&&!level[e[i].v])
level[e[i].v]=level[u]+1,Q.push(e[i].v);
}
return level[T];
}
int dfs(int u,int flow)
{
if(u==T||!flow)return flow;
int ret=0;
for(int &i=cur[u];i;i=e[i].next)
{
int v=e[i].v;
if(level[v]==level[u]+1)
{
int d=dfs(v,min(flow,e[i].w));
ret+=d;flow-=d;
e[i].w-=d;e[i^1].w+=d;
}
}
if(!ret)level[u]=0;
return ret;
}
int Dinic()
{
int ret=0;
while(bfs())
{
for(int i=S;i<=T;++i)cur[i]=h[i];
ret+=dfs(S,inf);
}
return ret;
}
int n,C[505],B[505][505],ans,tot;
int main()
{
n=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)ans+=(B[i][j]=read());
for(int i=1;i<=n;++i)C[i]=read();
S=0;T=n+n*n+1;tot=n;
for(int i=1;i<=n;++i)Add(S,i,C[i]);
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
{
++tot;
Add(i,tot,inf);Add(j,tot,inf);
Add(tot,T,B[i][j]);
}
printf("%d\n",ans-Dinic());
return 0;
}