python使用笔记26--多线程、多进程
1、概念
线程、进程
进程是资源的集合,也就是一个程序
线程是一个程序运行的最小单位
线程是在进程里面的
默认,一个进程就只有一个线程
一个电脑有几核CPU就只能同时运行几个任务,比如4核CPU只能同时运行4个线程
我们在操作电脑时,感觉是同时运行多个任务,是因为CPU的运算速度很快,有上下文切换,我们感觉不到
python里的多线程利用不了多核CPU,比如我的电脑是8核的CPU,起100个线程,这100个线程都是在一个CPU里面执行,其他7个CPU是空闲的
因为线程之间数据是共享的,同时来处理数据会乱,GLI全局解释器锁,保证线程都在同一个CPU上运行
多进程可以利用多核CPU
CPU密集型任务,用多进程-->消耗CPU比较多
IO(磁盘IO,网络IO)密集型任务,用多线程-->消耗IO比较多
#1、多线程,线程之间数据是共享的
#2、多进程,进程之间数据是独立的
#3、协程,一个线程,速度很快,从头到尾都只有一个线程,利用的原理是异步IO
Nginx -->一个线程
2、多线程
2.1、多线程代码
串行的方式是执行完一个,再接着执行第二个
多线程是同时启用多个线程去操作
1 def insert_db(): 2 time.sleep(3) 3 print('insert_db over') 4 5 start_time = time.time() 6 for i in range(3): #串行的方式 7 insert_db() 8 end_time = time.time() 9 print('串行的执行的时间',end_time - start_time ) 10 11 start_time2 = time.time() 12 #2、判断当前存活的线程个数为1个时 13 for i in range(3): 14 t = threading.Thread(target=insert_db) 15 t.start() 16 17 while threading.activeCount()!=1: 18 pass 19 20 end_time2 = time.time() 21 print('多线程执行的时间',end_time2 - start_time2)#只是主线程执行的时间,不计算子线程执行的时间
执行结果如图所示:
2.2、多线程的时间统计
1 def insert_db(): 2 time.sleep(3) 3 print('insert_db over') 4 start_time2 = time.time() 5 #2、判断当前存活的线程个数为1个时 6 for i in range(3): 7 t = threading.Thread(target=insert_db) 8 t.start() 9 10 end_time2 = time.time() 11 print('多线程执行的时间',end_time2 - start_time2)#只是主线程执行的时间,不计算子线程执行的时间
执行结果如图所示:
正常执行应该是3秒多一点,这里是因为只是主线程执行的时间,没有计算子线程执行的时间,如何解决该问题?
1.用两次循环来解决,这样代码看起来比较繁琐
1 threads = [] 2 start_time2 = time.time() 3 #2、判断当前存活的线程个数为1个时 4 for i in range(3): 5 t = threading.Thread(target=insert_db) 6 t.start() 7 threads.append(t) 8 9 for i in threads: 10 i.join() 11 end_time2 = time.time() 12 print('多线程执行的时间',end_time2 - start_time2)
2.用while循环来解决,判断当前活动的线程数为1,统计时间,如果不为1,则进入循环,不统计时间
1 start_time2 = time.time() 2 #2、判断当前存活的线程个数为1个时 3 for i in range(3): 4 t = threading.Thread(target=insert_db) 5 t.start() 6 7 while threading.activeCount()!=1: 8 pass 9 10 end_time2 = time.time() 11 print('多线程执行的时间',end_time2 - start_time2)
2.3、多线程传参
用元组的方式传参,args=(i,)#这里传入的是一个元组,一个参数时要加,
也可以用数组的方式来传参,args=['lxy']
1 import threading 2 import requests 3 import hashlib 4 import time 5 def down_load(url): 6 name = hashlib.md5(url.encode()).hexdigest() 7 r = requests.get(url) 8 with open('%s.jpg'%name,'wb') as fw: 9 fw.write(r.content) 10 11 l = [ 12 'http://www.nnzhp.cn/wp-content/themes/QQ/images/logo.jpg', 13 'http://www.nnzhp.cn/wp-content/uploads/2016/12/2016aj5kn45fjk5-150x150.jpg', 14 'http://www.nnzhp.cn/wp-content/themes/QQ/images/thumbnail.png' 15 ] 16 17 for i in l: 18 t = threading.Thread(target=down_load,args=(i,))#args=(i,),一个参数的时候要加, 19 t.start() 20 21 while threading.activeCount() != 1: 22 pass 23 24 print('down_load over...')
2.4、多线程获取函数返回值
多线程运行函数时,是没有办法获取到函数的返回值,所以可以定义一个全局的list,把函数的返回结果存到list就可以了
1 case_result = [] 2 def run_case(case_name): 3 print('run case over...') 4 case_result.append({case_name,'success'})
2.5、守护线程
守护线程,一旦主线程死掉,不管守护线程有没有执行完成,守护线程全部都结束
1 #守护线程,一旦主线程死掉,不管守护线程有没有执行完成,全部都结束 2 3 import threading 4 import time 5 6 def talk(name): 7 print('正在和%s聊天'%name) 8 time.sleep(200) 9 10 11 def shipin(name): 12 print('正在和%s视频' % name) 13 time.sleep(200) 14 15 16 print('qq聊天窗口') 17 t1 = threading.Thread(target=talk,args=['xxl']) 18 t1.setDaemon(True)#设置线程为守护线程 19 t1.start() 20 21 22 t2 = threading.Thread(target=shipin,args=['lxy']) 23 t2.setDaemon(True)#设置线程为守护线程 24 t2.start() 25 26 27 time.sleep(5) 28 print('结束')
2.6、线程锁
多个线程同时操作同一个数据时,会有问题,这个时候需要用到线程锁
线程锁需要设置锁定时长,数据操作完成后,需要解锁,不然其他线程会进入无线等待
1 #线程锁 2 #多个线程同时操作同一个数据的时候,会有问题 3 import threading 4 lock = threading.Lock() 5 count = 0 6 def test(): 7 global count 8 lock.acquire(timeout=3000)#加锁,设置超时时间为3毫秒 9 count += 1 10 print(count) 11 lock.release()#解锁 12 13 for i in range(100): 14 t = threading.Thread(target=test) 15 t.start()
3、多进程
1 import multiprocessing 2 import time 3 import threading 4 lock = multiprocessing.Lock()#锁 5 a = 1 6 7 def xxx(): 8 pass 9 10 def test(): 11 for i in range(20):#进程里可以执行多个线程 12 t = threading.Thread(target=xxx) 13 t.start() 14 time.sleep(6) 15 global a 16 with lock:#加锁,with用完之后会自动释放,因为with会自动管理上下文,进程里加锁没有啥意义 17 a += 1 18 print(a)#a的值为2 19 print('over...') 20 21 ''' 22 主进程叫醒进程,进程再开始干活 23 进程是包含线程的 24 ''' 25 if __name__ == '__main__':#multiprocessing要用main方法 26 for i in range(5):#6个进程--6个线程 27 p = multiprocessing.Process(target=test,name='ssz')#target:方法名,name:进程名,args:参数 28 p.start()#进程启动后,加上主进程有两个进程在运行 29 #print(p.pid)#进程ID 30 31 while len(multiprocessing.active_children())!=0:#等待 32 #print(multiprocessing.active_children()) 33 pass 34 print('最后的over...') 35 print(a)#a的值为1,是因为进程之间的数据是独立的 36 #print('abc...')