TensorFlow实战中AlexNet卷积神经网络的训练

01 出错

TypeError: as_default() missing 1 required positional argument: 'self'

经过百度、谷歌的双重查找,没找到就具体原因。后面去TensorFlow官方文档中发现,tf.Graph的用法如下:

g = tf.Graph()
with g.as_default():
  # Define operations and tensors in `g`.
  c = tf.constant(30.0)
  assert c.graph is g

因此,做了一点小改动。把语句:

with tf.Graph().as_default():

改成:

g = tf.Graph()
with g.as_default():

02 运行代码对比带LRN和不带

最后成功运行了第一个带有LRN的版本:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2018/11/20 10:42
# @Author  : Chen Cjv
# @Site    : http://www.cnblogs.com/cjvae/
# @File    : AlexNet.py
# @Software: PyCharm
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
from datetime import datetime
import math
import time
import tensorflow as tf

batch_size = 32
num_batches = 100


# 展示每一个卷积层或池化层输出的tensor的尺寸,接收一个tensor输入
def print_activation(t):
    print(t.op.name, '', t.get_shape().as_list())


def inference(images):
    # 训练的模型参数
    parameters = []

    # 1th CL starting
    with tf.name_scope('conv1') as scope:
        # 截断正态分布初始化卷积核参数
        # 卷积核尺寸11 x 11 颜色3通道 卷积核64
        kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 64],
                                                 dtype=tf.float32, stddev=1e-1), name='weights')
        # 实现卷积操作,步长4x4(在图像上每4x4区域取样一次,每次取样卷积核大小为11x11)
        conv = tf.nn.conv2d(images, kernel, [1, 4, 4, 1], padding='SAME')
        # 卷积偏置为0
        biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32),
                             trainable=True, name='biases')
        # 将卷积结果与偏置相加
        bias = tf.nn.bias_add(conv, biases)
        # 对结果非线性处理
        conv1 = tf.nn.relu(bias, name=scope)
        # 输出conv1的信息
        print_activation(conv1)
        # 添加参数
        parameters  += [kernel, biases]
    # 1th CL ending

    # add 1th LRN layer and max-pooling layer starting
    # depth_radius设为4,lrn可以选择不用,效果待测试
    lrn1 = tf.nn.lrn(conv1, 4, bias=1.0, alpha=0.001/9, beta=0.75, name='lrn1')
    # 池化:尺寸3x3(将3x3的大小的像素块降为1x1 步长为2x2 VALID表示取样不超过边框)
    pool1 = tf.nn.max_pool(lrn1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID', name='pool1')
    print_activation(pool1)
    # add 1th LRN layer and max-pooling layer ending

    # designing second Convolutional Layer starting
    with tf.name_scope('conv2') as scope:
        # 不同第一卷积层,这层卷积核尺寸5x5,通道为上层输出通道数(即卷积核数)64
        # 卷积核数量为192
        kernel = tf.Variable(tf.truncated_normal([5, 5, 64, 192],
                                                 dtype=tf.float32, stddev=1e-1), name='weights')
        # 卷积步长为1,即扫描全部图像
        conv = tf.nn.conv2d(pool1, kernel, [1, 1, 1, 1], padding='SAME')
        biases = tf.Variable(tf.constant(0.0, shape=[192],
                                         dtype=tf.float32), trainable=True, name='biases')
        bias = tf.nn.bias_add(conv, biases)
        conv2 = tf.nn.relu(bias, name=scope)
        parameters += [kernel, biases]
    print_activation(conv2)
    # designing 2th CL ending

    # add 2th LRN layer and max-pooling layer starting
    lrn2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9, beta=0.75, name='lrn2')
    pool2 = tf.nn.max_pool (lrn2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID', name='pool2')
    print_activation(pool2)
    # add 2th LRN layer and max-pooling layer ending

    # designing 3th Convolutional Layer starting
    with tf.name_scope('conv3') as scope:
        # 卷积核尺寸3x3 通道数192 卷积核384
        kernel = tf.Variable(tf.truncated_normal([3, 3, 192, 384],
                                                 dtype=tf.float32, stddev=1e-1), name='weights')
        conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding='SAME')
        biases = tf.Variable(tf.constant(0.0, shape=[384],
                                       dtype=tf.float32), trainable=True, name='biases')
        bias = tf.nn.bias_add(conv, biases)
        conv3 = tf.nn.relu(bias, name=scope)
        parameters += [kernel, biases]
        print_activation(conv3)
    # designing 3th CL ending

    # designing 4th CL starting
    with tf.name_scope('conv4') as scope:
        # 卷积核尺寸3x3 通道数384 卷积核降为256
        kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 256],
                                                 dtype=tf.float32, stddev=1e-1), name='weights')
        conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding='SAME')
        biases = tf.Variable(tf.constant(0.0, shape=[256],
                                       dtype=tf.float32), trainable=True, name='biases')
        bias = tf.nn.bias_add(conv, biases)
        conv4 = tf.nn.relu(bias, name=scope)
        parameters += [kernel, biases]
        print_activation(conv4)
    # designing fourth Convolutional Layer ending

    # designing fifth Convolutional Layer starting
    with tf.name_scope('conv4') as scope:
        # 卷积核尺寸3x3 通道数256 卷积核256
        kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256],
                                                 dtype=tf.float32, stddev=1e-1), name='weights')
        conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding='SAME')
        biases = tf.Variable(tf.constant(0.0, shape=[256],
                                       dtype=tf.float32), trainable=True, name='biases')
        bias = tf.nn.bias_add(conv, biases)
        conv5 = tf.nn.relu(bias, name=scope)
        parameters += [kernel, biases]
        print_activation(conv5)
    # designing fifth Convolutional Layer ending

    pool5 = tf.nn.max_pool(conv5, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
                            padding='VALID', name='pool5')
    print_activation (pool5)


    return pool5, parameters


# 评估每轮的计算时间
# session是训练句柄,target是训练算子,info_string是测试名称
def time_tensorflow_run(session, target, info_string):
    # 只考虑预热轮数10轮之后的时间
    num_steps_burn_in = 10
    # 总时间
    total_duration = 0.0
    # 平方和
    total_duration_squared = 0.0
    for i in range(num_batches + num_steps_burn_in):
        start_time = time.time()
        _ = session.run(target)
        duration = time.time() - start_time
        if i >= num_steps_burn_in:
            if not i % 10:
                print('%s: step %d, duration = %.3f' %
                      (datetime.now(), i - num_steps_burn_in, duration))
                total_duration += duration
                total_duration_squared += duration * duration

    # 计算平均耗时mn 标准差sd
    mn = total_duration / num_batches
    vr = total_duration_squared / num_batches - mn * mn
    sd = math.sqrt(vr)
    print('%s: %s across %d steps, %.3f +/- %.3f sec  / batch' %
          (datetime.now(), info_string, num_batches, mn, sd))


# 主函数
def run_benchmark():
    g = tf.Graph ()
    # 定义默认Graph
    with g.as_default():
        # 构造随机数据
        image_size = 224
        images = tf.Variable(tf.random_normal(
            [batch_size, image_size, image_size, 3],
            dtype=tf.float32, stddev=1e-1 ))

        pool5, parameters = inference(images)

        init = tf.global_variables_initializer()
        sess = tf.Session()
        sess.run(init)

        # 统计运行时间
        time_tensorflow_run(sess, pool5, "Forward")

        objective = tf.nn.l2_loss(pool5)
        grad = tf.gradients(objective, parameters)
        time_tensorflow_run(sess, grad, "Forward-backward")


# 执行主函数
run_benchmark()

下面是我的运行结果:

然后是不带LRN的版本:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2018/11/20 10:42
# @Author  : Chen Cjv
# @Site    : http://www.cnblogs.com/cjvae/
# @File    : AlexNet.py
# @Software: PyCharm
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
from datetime import datetime
import math
import time
import tensorflow as tf

batch_size = 32
num_batches = 100


# 展示每一个卷积层或池化层输出的tensor的尺寸,接收一个tensor输入
def print_activation(t):
    print(t.op.name, '', t.get_shape().as_list())


def inference(images):
    # 训练的模型参数
    parameters = []

    # 1th CL starting
    with tf.name_scope('conv1') as scope:
        # 截断正态分布初始化卷积核参数
        # 卷积核尺寸11 x 11 颜色3通道 卷积核64
        kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 64],
                                                 dtype=tf.float32, stddev=1e-1), name='weights')
        # 实现卷积操作,步长4x4(在图像上每4x4区域取样一次,每次取样卷积核大小为11x11)
        conv = tf.nn.conv2d(images, kernel, [1, 4, 4, 1], padding='SAME')
        # 卷积偏置为0
        biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32),
                             trainable=True, name='biases')
        # 将卷积结果与偏置相加
        bias = tf.nn.bias_add(conv, biases)
        # 对结果非线性处理
        conv1 = tf.nn.relu(bias, name=scope)
        # 输出conv1的信息
        print_activation(conv1)
        # 添加参数
        parameters  += [kernel, biases]
    # 1th CL ending

    # add 1th max-pooling layer starting
    # 池化:尺寸3x3(将3x3的大小的像素块降为1x1 步长为2x2 VALID表示取样不超过边框)
    pool1 = tf.nn.max_pool (conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
                            padding='VALID', name='pool1')
    print_activation(pool1)
    # add max-pooling layer ending

    # designing second Convolutional Layer starting
    with tf.name_scope('conv2') as scope:
        # 不同第一卷积层,这层卷积核尺寸5x5,通道为上层输出通道数(即卷积核数)64
        # 卷积核数量为192
        kernel = tf.Variable(tf.truncated_normal([5, 5, 64, 192],
                                                 dtype=tf.float32, stddev=1e-1), name='weights')
        # 卷积步长为1,即扫描全部图像
        conv = tf.nn.conv2d(pool1, kernel, [1, 1, 1, 1], padding='SAME')
        biases = tf.Variable(tf.constant(0.0, shape=[192],
                                         dtype=tf.float32), trainable=True, name='biases')
        bias = tf.nn.bias_add(conv, biases)
        conv2 = tf.nn.relu(bias, name=scope)
        parameters += [kernel, biases]
    print_activation(conv2)
    # designing 2th CL ending

    # add 2th max-pooling layer starting
    pool2 = tf.nn.max_pool (conv2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
                            padding='VALID', name='pool2')
    print_activation(pool2)
    # add 2th max-pooling layer ending

    # designing 3th Convolutional Layer starting
    with tf.name_scope('conv3') as scope:
        # 卷积核尺寸3x3 通道数192 卷积核384
        kernel = tf.Variable(tf.truncated_normal([3, 3, 192, 384],
                                                 dtype=tf.float32, stddev=1e-1), name='weights')
        conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding='SAME')
        biases = tf.Variable(tf.constant(0.0, shape=[384],
                                       dtype=tf.float32), trainable=True, name='biases')
        bias = tf.nn.bias_add(conv, biases)
        conv3 = tf.nn.relu(bias, name=scope)
        parameters += [kernel, biases]
        print_activation(conv3)
    # designing 3th CL ending

    # designing 4th CL starting
    with tf.name_scope('conv4') as scope:
        # 卷积核尺寸3x3 通道数384 卷积核降为256
        kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 256],
                                                 dtype=tf.float32, stddev=1e-1), name='weights')
        conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding='SAME')
        biases = tf.Variable(tf.constant(0.0, shape=[256],
                                       dtype=tf.float32), trainable=True, name='biases')
        bias = tf.nn.bias_add(conv, biases)
        conv4 = tf.nn.relu(bias, name=scope)
        parameters += [kernel, biases]
        print_activation(conv4)
    # designing fourth Convolutional Layer ending

    # designing fifth Convolutional Layer starting
    with tf.name_scope('conv4') as scope:
        # 卷积核尺寸3x3 通道数256 卷积核256
        kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256],
                                                 dtype=tf.float32, stddev=1e-1), name='weights')
        conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding='SAME')
        biases = tf.Variable(tf.constant(0.0, shape=[256],
                                       dtype=tf.float32), trainable=True, name='biases')
        bias = tf.nn.bias_add(conv, biases)
        conv5 = tf.nn.relu(bias, name=scope)
        parameters += [kernel, biases]
        print_activation(conv5)
    # designing fifth Convolutional Layer ending

    pool5 = tf.nn.max_pool(conv5, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
                            padding='VALID', name='pool5')
    print_activation (pool5)


    return pool5, parameters


# 评估每轮的计算时间
# session是训练句柄,target是训练算子,info_string是测试名称
def time_tensorflow_run(session, target, info_string):
    # 只考虑预热轮数10轮之后的时间
    num_steps_burn_in = 10
    # 总时间
    total_duration = 0.0
    # 平方和
    total_duration_squared = 0.0
    for i in range(num_batches + num_steps_burn_in):
        start_time = time.time()
        _ = session.run(target)
        duration = time.time() - start_time
        if i >= num_steps_burn_in:
            if not i % 10:
                print('%s: step %d, duration = %.3f' %
                      (datetime.now(), i - num_steps_burn_in, duration))
                total_duration += duration
                total_duration_squared += duration * duration

    # 计算平均耗时mn 标准差sd
    mn = total_duration / num_batches
    vr = total_duration_squared / num_batches - mn * mn
    sd = math.sqrt(vr)
    print('%s: %s across %d steps, %.3f +/- %.3f sec  / batch' %
          (datetime.now(), info_string, num_batches, mn, sd))


# 主函数
def run_benchmark():
    g = tf.Graph ()
    # 定义默认Graph
    with g.as_default():
        # 构造随机数据
        image_size = 224
        images = tf.Variable(tf.random_normal(
            [batch_size, image_size, image_size, 3],
            dtype=tf.float32, stddev=1e-1 ))

        pool5, parameters = inference(images)

        init = tf.global_variables_initializer()
        sess = tf.Session()
        sess.run(init)

        # 统计运行时间
        time_tensorflow_run(sess, pool5, "Forward")

        objective = tf.nn.l2_loss(pool5)
        grad = tf.gradients(objective, parameters)
        time_tensorflow_run(sess, grad, "Forward-backward")


# 执行主函数
run_benchmark()

运行结果:

从两个版本可见,带有LRN层的AlexNet训练时间比较长,据说效果有待商榷。

posted on 2018-11-24 17:38  Cjv  阅读(362)  评论(0编辑  收藏  举报