第七课: - 计算异常值的方法

第 7 课

 异常值

Pandas提供了大量与数据探索相关的函数。这些统计特征函数能反映出数据的整体分布,主要作为Pandas的对象DataFrame或Series的方法出现。 
sum():计算数据样本的总和(按列计算) 

mean():计算数据样本的算术平均数 

var():计算数据样本的方差 

std():计算数据样本的标准差 

corr():计算数据样本的Spearman(Pearson)相关系数矩阵  

cov():计算数据样本的协方差矩阵 

skew():样本值的偏度(三阶矩) 

kurt():样本值的峰度(四阶矩) 
describe():给出样本的基本描述(基本统计量如均值、标准差等)

In [1]:

import pandas as pd
import sys
In [2]:
print('Python version ' + sys.version)
print('Pandas version ' + pd.__version__) 
Python version 3.5.1 |Anaconda custom (64-bit)| (default, Feb 16 2016, 09:49:46) [MSC v.1900 64 bit (AMD64)]
Pandas version 0.20.1
In [3]:
# 创建一个以日期为索引的数据帧
States = ['NY', 'NY', 'NY', 'NY', 'FL', 'FL', 'GA', 'GA', 'FL', 'FL']
data = [1.0, 2, 3, 4, 5, 6, 7, 8, 9, 10]
idx = pd.date_range('1/1/2012', periods=10, freq='MS')
df1 = pd.DataFrame(data, index=idx, columns=['Revenue'])
df1['State'] = States
#创建第二个数据帧
data2 = [10.0, 10.0, 9, 9, 8, 8, 7, 7, 6, 6]
idx2 = pd.date_range('1/1/2013', periods=10, freq='MS')
df2 = pd.DataFrame(data2, index=idx2, columns=['Revenue']) df2['State'] = States

请参考pandas中时间序列——date_range函数
In [4]:
# 合并数据帧
df = pd.concat([df1,df2])
df
Out[4]:
 RevenueState
2012-01-01 1.0 NY
2012-02-01 2.0 NY
2012-03-01 3.0 NY
2012-04-01 4.0 NY
2012-05-01 5.0 FL
2012-06-01 6.0 FL
2012-07-01 7.0 GA
2012-08-01 8.0 GA
2012-09-01 9.0 FL
2012-10-01 10.0 FL
2013-01-01 10.0 NY
2013-02-01 10.0 NY
2013-03-01 9.0 NY
2013-04-01 9.0 NY
2013-05-01 8.0 FL
2013-06-01 8.0 FL
2013-07-01 7.0 GA
2013-08-01 7.0 GA
2013-09-01 6.0 FL
2013-10-01 6.0 FL
 

计算异常值的方法

注意:平均偏差和标准偏差仅适用于高斯分布。

In [5]:

# 方法 1
# 创建df的一个拷贝
newdf = df.copy()
newdf['x-Mean'] = abs(newdf['Revenue'] - newdf['Revenue'].mean())
newdf['1.96*std'] = 1.96*newdf['Revenue'].std()  
newdf['Outlier'] = abs(newdf['Revenue'] - newdf['Revenue'].mean()) > 1.96*newdf['Revenue'].std()
newdf

Out[5]:
 RevenueStatex-Mean1.96*stdOutlier
2012-01-01 1.0 NY 5.75 5.200273 True
2012-02-01 2.0 NY 4.75 5.200273 False
2012-03-01 3.0 NY 3.75 5.200273 False
2012-04-01 4.0 NY 2.75 5.200273 False
2012-05-01 5.0 FL 1.75 5.200273 False
2012-06-01 6.0 FL 0.75 5.200273 False
2012-07-01 7.0 GA 0.25 5.200273 False
2012-08-01 8.0 GA 1.25 5.200273 False
2012-09-01 9.0 FL 2.25 5.200273 False
2012-10-01 10.0 FL 3.25 5.200273 False
2013-01-01 10.0 NY 3.25 5.200273 False
2013-02-01 10.0 NY 3.25 5.200273 False
2013-03-01 9.0 NY 2.25 5.200273 False
2013-04-01 9.0 NY 2.25 5.200273 False
2013-05-01 8.0 FL 1.25 5.200273 False
2013-06-01 8.0 FL 1.25 5.200273 False
2013-07-01 7.0 GA 0.25 5.200273 False
2013-08-01 7.0 GA 0.25 5.200273 False
2013-09-01 6.0 FL 0.75 5.200273 False
2013-10-01 6.0 FL 0.75 5.200273 False
In [6]:
# 方法 2
# 按项分组
#创建df的一个拷贝
newdf = df.copy() State = newdf.groupby('State') newdf['Outlier'] = State.transform( lambda x: abs(x-x.mean()) > 1.96*x.std() ) newdf['x-Mean'] = State.transform( lambda x: abs(x-x.mean()) ) newdf['1.96*std'] = State.transform( lambda x: 1.96*x.std() ) newdf 
Out[6]:
 RevenueStateOutlierx-Mean1.96*std
2012-01-01 1.0 NY False 5.00 7.554813
2012-02-01 2.0 NY False 4.00 7.554813
2012-03-01 3.0 NY False 3.00 7.554813
2012-04-01 4.0 NY False 2.00 7.554813
2012-05-01 5.0 FL False 2.25 3.434996
2012-06-01 6.0 FL False 1.25 3.434996
2012-07-01 7.0 GA False 0.25 0.980000
2012-08-01 8.0 GA False 0.75 0.980000
2012-09-01 9.0 FL False 1.75 3.434996
2012-10-01 10.0 FL False 2.75 3.434996
2013-01-01 10.0 NY False 4.00 7.554813
2013-02-01 10.0 NY False 4.00 7.554813
2013-03-01 9.0 NY False 3.00 7.554813
2013-04-01 9.0 NY False 3.00 7.554813
2013-05-01 8.0 FL False 0.75 3.434996
2013-06-01 8.0 FL False 0.75 3.434996
2013-07-01 7.0 GA False 0.25 0.980000
2013-08-01 7.0 GA False 0.25 0.980000
2013-09-01 6.0 FL False 1.25 3.434996
2013-10-01 6.0 FL False 1.25 3.434996
In [7]:
# Method 2
# Group by multiple items

# make a copy of original df
newdf = df.copy()

StateMonth = newdf.groupby(['State', lambda x: x.month])

newdf['Outlier'] = StateMonth.transform( lambda x: abs(x-x.mean()) > 1.96*x.std() )
newdf['x-Mean'] = StateMonth.transform( lambda x: abs(x-x.mean()) )
newdf['1.96*std'] = StateMonth.transform( lambda x: 1.96*x.std() )
newdf
Out[7]:
 RevenueStateOutlierx-Mean1.96*std
2012-01-01 1.0 NY False 4.5 12.473364
2012-02-01 2.0 NY False 4.0 11.087434
2012-03-01 3.0 NY False 3.0 8.315576
2012-04-01 4.0 NY False 2.5 6.929646
2012-05-01 5.0 FL False 1.5 4.157788
2012-06-01 6.0 FL False 1.0 2.771859
2012-07-01 7.0 GA False 0.0 0.000000
2012-08-01 8.0 GA False 0.5 1.385929
2012-09-01 9.0 FL False 1.5 4.157788
2012-10-01 10.0 FL False 2.0 5.543717
2013-01-01 10.0 NY False 4.5 12.473364
2013-02-01 10.0 NY False 4.0 11.087434
2013-03-01 9.0 NY False 3.0 8.315576
2013-04-01 9.0 NY False 2.5 6.929646
2013-05-01 8.0 FL False 1.5 4.157788
2013-06-01 8.0 FL False 1.0 2.771859
2013-07-01 7.0 GA False 0.0 0.000000
2013-08-01 7.0 GA False 0.5 1.385929
2013-09-01 6.0 FL False 1.5 4.157788
2013-10-01 6.0 FL False 2.0 5.543717
In [8]:
# Method 3
# Group by item

# make a copy of original df
newdf = df.copy()

State = newdf.groupby('State')

def s(group):
    group['x-Mean'] = abs(group['Revenue'] - group['Revenue'].mean())
    group['1.96*std'] = 1.96*group['Revenue'].std()  
    group['Outlier'] = abs(group['Revenue'] - group['Revenue'].mean()) > 1.96*group['Revenue'].std()
    return group

Newdf2 = State.apply(s)
Newdf2
Out[8]:
 RevenueStatex-Mean1.96*stdOutlier
2012-01-01 1.0 NY 5.00 7.554813 False
2012-02-01 2.0 NY 4.00 7.554813 False
2012-03-01 3.0 NY 3.00 7.554813 False
2012-04-01 4.0 NY 2.00 7.554813 False
2012-05-01 5.0 FL 2.25 3.434996 False
2012-06-01 6.0 FL 1.25 3.434996 False
2012-07-01 7.0 GA 0.25 0.980000 False
2012-08-01 8.0 GA 0.75 0.980000 False
2012-09-01 9.0 FL 1.75 3.434996 False
2012-10-01 10.0 FL 2.75 3.434996 False
2013-01-01 10.0 NY 4.00 7.554813 False
2013-02-01 10.0 NY 4.00 7.554813 False
2013-03-01 9.0 NY 3.00 7.554813 False
2013-04-01 9.0 NY 3.00 7.554813 False
2013-05-01 8.0 FL 0.75 3.434996 False
2013-06-01 8.0 FL 0.75 3.434996 False
2013-07-01 7.0 GA 0.25 0.980000 False
2013-08-01 7.0 GA 0.25 0.980000 False
2013-09-01 6.0 FL 1.25 3.434996 False
2013-10-01 6.0 FL 1.25 3.434996 False
In [9]:
# Method 3
# Group by multiple items

# make a copy of original df
newdf = df.copy()

StateMonth = newdf.groupby(['State', lambda x: x.month])

def s(group):
    group['x-Mean'] = abs(group['Revenue'] - group['Revenue'].mean())
    group['1.96*std'] = 1.96*group['Revenue'].std()  
    group['Outlier'] = abs(group['Revenue'] - group['Revenue'].mean()) > 1.96*group['Revenue'].std()
    return group

Newdf2 = StateMonth.apply(s)
Newdf2
Out[9]:
 RevenueStatex-Mean1.96*stdOutlier
2012-01-01 1.0 NY 4.5 12.473364 False
2012-02-01 2.0 NY 4.0 11.087434 False
2012-03-01 3.0 NY 3.0 8.315576 False
2012-04-01 4.0 NY 2.5 6.929646 False
2012-05-01 5.0 FL 1.5 4.157788 False
2012-06-01 6.0 FL 1.0 2.771859 False
2012-07-01 7.0 GA 0.0 0.000000 False
2012-08-01 8.0 GA 0.5 1.385929 False
2012-09-01 9.0 FL 1.5 4.157788 False
2012-10-01 10.0 FL 2.0 5.543717 False
2013-01-01 10.0 NY 4.5 12.473364 False
2013-02-01 10.0 NY 4.0 11.087434 False
2013-03-01 9.0 NY 3.0 8.315576 False
2013-04-01 9.0 NY 2.5 6.929646 False
2013-05-01 8.0 FL 1.5 4.157788 False
2013-06-01 8.0 FL 1.0 2.771859 False
2013-07-01 7.0 GA 0.0 0.000000 False
2013-08-01 7.0 GA 0.5 1.385929 False
2013-09-01 6.0 FL 1.5 4.157788 False
2013-10-01 6.0 FL 2.0 5.543717 False
 

假设一个非高斯分布(如果你绘制它,它看起来不像正态分布)

In [10]:
# make a copy of original df
newdf = df.copy()

State = newdf.groupby('State')

newdf['Lower'] = State['Revenue'].transform( lambda x: x.quantile(q=.25) - (1.5*(x.quantile(q=.75)-x.quantile(q=.25))) )
newdf['Upper'] = State['Revenue'].transform( lambda x: x.quantile(q=.75) + (1.5*(x.quantile(q=.75)-x.quantile(q=.25))) )
newdf['Outlier'] = (newdf['Revenue'] < newdf['Lower']) | (newdf['Revenue'] > newdf['Upper']) 
newdf
Out[10]:
 RevenueStateLowerUpperOutlier
2012-01-01 1.0 NY -7.000 19.000 False
2012-02-01 2.0 NY -7.000 19.000 False
2012-03-01 3.0 NY -7.000 19.000 False
2012-04-01 4.0 NY -7.000 19.000 False
2012-05-01 5.0 FL 2.625 11.625 False
2012-06-01 6.0 FL 2.625 11.625 False
2012-07-01 7.0 GA 6.625 7.625 False
2012-08-01 8.0 GA 6.625 7.625 True
2012-09-01 9.0 FL 2.625 11.625 False
2012-10-01 10.0 FL 2.625 11.625 False
2013-01-01 10.0 NY -7.000 19.000 False
2013-02-01 10.0 NY -7.000 19.000 False
2013-03-01 9.0 NY -7.000 19.000 False
2013-04-01 9.0 NY -7.000 19.000 False
2013-05-01 8.0 FL 2.625 11.625 False
2013-06-01 8.0 FL 2.625 11.625 False
2013-07-01 7.0 GA 6.625 7.625 False
2013-08-01 7.0 GA 6.625 7.625 False
2013-09-01 6.0 FL 2.625 11.625 False
2013-10-01 6.0 FL 2.625 11.625 False
 

This tutorial wasrewrited by CDS

posted on 2018-05-22 15:15  六尺巷人  阅读(1036)  评论(0编辑  收藏  举报

导航