并查集--学习详解

 【转】

文章作者:yx_th000 文章来源Cherish_yimi (http://www.cnblogs.com/cherish_yimi/

    昨天和今天学习了并查集和trie树,并练习了三道入门题目,理解更为深刻,觉得有必要总结一下,这其中的内容定义之类的是取自网络,操作的说明解释及程序的注释部分为个人理解。并查集学习:

l         并查集(union-find sets)

一种简单的用途广泛的集合. 并查集是若干个不相交集合,能够实现较快的合并和判断元素所在集合的操作,应用很多,如其求无向图的连通分量个数等。最完美的应用当属:实现Kruskar算法求最小生成树。

l         并查集的精髓(即它的三种操作,结合实现代码模板进行理解):

1、Make_Set(x) 把每一个元素初始化为一个集合

初始化后每一个元素的父亲节点是它本身,每一个元素的祖先节点也是它本身(也可以根据情况而变)。

2、Find_Set(x) 查找一个元素所在的集合

查找一个元素所在的集合,其精髓是找到这个元素所在集合的祖先!这个才是并查集判断和合并的最终依据。 判断两个元素是否属于同一集合,只要看他们所在集合的祖先是否相同即可。 合并两个集合,也是使一个集合的祖先成为另一个集合的祖先,具体见示意图

3、Union(x,y) 合并x,y所在的两个集合

合并两个不相交集合操作很简单: 利用Find_Set找到其中两个集合的祖先,将一个集合的祖先指向另一个集合的祖先。如图

 

l         并查集的优化

1、Find_Set(x)时 路径压缩 寻找祖先时我们一般采用递归查找,但是当元素很多亦或是整棵树变为一条链时,每次Find_Set(x)都是O(n)的复杂度,有没有办法减小这个复杂度呢? 答案是肯定的,这就是路径压缩,即当我们经过"递推"找到祖先节点后,"回溯"的时候顺便将它的子孙节点都直接指向祖先,这样以后再次Find_Set(x)时复杂度就变成O(1)了,如下图所示;可见,路径压缩方便了以后的查找。

 

2、Union(x,y)时 按秩合并 即合并的时候将元素少的集合合并到元素多的集合中,这样合并之后树的高度会相对较小。

l         主要代码实现

 

 1 int father[MAX];   /* father[x]表示x的父节点*/
 2  int rank[MAX];     /* rank[x]表示x的秩*/
 3  
 4  
 5  /* 初始化集合*/
 6  void Make_Set(int x)
 7  {
 8      father[x] = x; //根据实际情况指定的父节点可变化
 9     rank[x] = 0;   //根据实际情况初始化秩也有所变化
10 }
11 
12 
13 /* 查找x元素所在的集合,回溯时压缩路径*/
14 int Find_Set(int x)
15 {
16     if (x != father[x])
17     {
18         father[x] = Find_Set(father[x]); //这个回溯时的压缩路径是精华
19     }
20     return father[x];
21 }
22 
23 
24 /* 
25    按秩合并x,y所在的集合
26    下面的那个if else结构不是绝对的,具体根据情况变化
27    但是,宗旨是不变的即,按秩合并,实时更新秩。
28 */
29 void Union(int x, int y)
30 {
31     x = Find_Set(x);
32     y = Find_Set(y);
33     if (x == y) return;
34     if (rank[x] > rank[y]) 
35     {
36         father[y] = x;
37     }
38     else
39     {
40         if (rank[x] == rank[y])
41         {
42             rank[y]++;
43         }
44         father[x] = y;
45     }
46 }

 

 

 

posted @ 2015-07-28 11:25  Gladitor  阅读(297)  评论(0编辑  收藏  举报