Bzoj4804: 欧拉心算
链接
推一下就是\(\sum_{k=1}^{n}\lfloor\frac{n}{k}\rfloor^2\sum_{d|k}\phi(d)\mu(\frac{k}{d})\)
\(\sum_{d|k}\phi(d)\mu(\frac{k}{d})\)线性筛一下就好
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e7 + 1);
IL ll Read(){
RG ll x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
int prime[_], num;
ll f[_];
bool isprime[_];
IL void Prepare(){
isprime[1] = 1; f[1] = 1;
for(RG int i = 2; i < _; ++i){
if(!isprime[i]){ prime[++num] = i; f[i] = i - 2; }
for(RG int j = 1; j <= num && i * prime[j] < _; ++j){
isprime[i * prime[j]] = 1;
if(i % prime[j]) f[i * prime[j]] = f[i] * f[prime[j]];
else{
if((i / prime[j]) % prime[j]) f[i * prime[j]] = f[i / prime[j]] * (prime[j] - 1) * (prime[j] - 1);
else f[i * prime[j]] = f[i] * prime[j];
break;
}
}
}
for(RG int i = 2; i < _; ++i) f[i] += f[i - 1];
}
int main(RG int argc, RG char* argv[]){
Prepare();
for(RG ll T = Read(), n, ans; T; --T){
n = Read(); ans = 0;
for(RG ll i = 1, j; i <= n; i = j + 1){
j = n / (n / i);
ans += (n / i) * (n / i) * (f[j] - f[i - 1]);
}
printf("%lld\n", ans);
}
return 0;
}