BZOJ1443: [JSOI2009]游戏Game
传送门
这个博弈类似放骨牌,参见这道题
所以就可以黑白染色之后跑二分图最大匹配,其中的不必匹配的点就是答案
这些点是什么呢,\(yy\) 一下发现貌似就是残余网络中与 \(s\) 或 \(t\) 在同一个强连通分量的点?
还要特判一下只有联通块只有一个点的点
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn(10005);
const int maxm(1e6 + 5);
int first[maxn], id[105][105], n, m, cnt, idx, lev[maxn], cur[maxn];
int dfn[maxn], low[maxn], dfx, st[maxn], tp, vis[maxn], bel[maxn], mark[maxn];
queue <int> q;
char mp[105][105];
struct Edge {
int to, next, w;
} edge[maxm];
inline void Add(int u, int v, int w) {
edge[cnt] = (Edge){v, first[u], w}, first[u] = cnt++;
edge[cnt] = (Edge){u, first[v], 0}, first[v] = cnt++;
}
inline int Bfs() {
int e, u, v;
memset(lev, 0, sizeof(lev));
lev[0] = 1, q.push(0);
while (!q.empty()) {
u = q.front(), q.pop();
for (e = first[u]; ~e; e = edge[e].next)
if (!lev[v = edge[e].to] && edge[e].w) lev[v] = lev[u] + 1, q.push(v);
}
return lev[idx + 1];
}
int Dfs(int u, int maxf) {
if (u == idx + 1) return maxf;
int ret, &e = cur[u], v, f;
for (ret = 0; ~e; e = edge[e].next)
if (lev[v = edge[e].to] == lev[u] + 1 && edge[e].w) {
f = Dfs(v, min(edge[e].w, maxf - ret));
ret += f, edge[e].w -= f, edge[e ^ 1].w += f;
if (ret == maxf) break;
}
if (!ret) lev[u] = 0;
return ret;
}
void Tarjan(int u) {
low[u] = dfn[u] = ++dfx, st[++tp] = u, vis[u] = 1;
int e, v;
for (e = first[u]; ~e; e = edge[e].next)
if (edge[e].w) {
if (!dfn[v = edge[e].to]) Tarjan(v), low[u] = min(low[u], low[v]);
else if (vis[v]) low[u] = min(low[u], dfn[v]);
}
if (low[u] == dfn[u]) {
do {
v = st[tp--], vis[v] = 0;
bel[v] = u;
} while (v ^ u);
}
}
int main() {
memset(first, -1, sizeof(first));
int i, j, e, v, ans;
scanf("%d%d", &n, &m), ans = 0;
for (i = 1; i <= n; ++i) {
scanf(" %s", mp[i] + 1);
for (j = 1; j <= m; ++j) id[i][j] = ++idx;
}
for (i = 1; i <= n; ++i)
for (j = 1; j <= m; ++j)
if (mp[i][j] != '#' && (~(i + j) & 1)){
Add(0, id[i][j], 1);
if (mp[i - 1][j] == '.') Add(id[i][j], id[i - 1][j], 1);
if (mp[i + 1][j] == '.') Add(id[i][j], id[i + 1][j], 1);
if (mp[i][j - 1] == '.') Add(id[i][j], id[i][j - 1], 1);
if (mp[i][j + 1] == '.') Add(id[i][j], id[i][j + 1], 1);
}
else if (mp[i][j] != '#') Add(id[i][j], idx + 1, 1);
while (Bfs()) memcpy(cur, first, sizeof(cur)), Dfs(0, 1e9);
for (i = 0; i <= idx + 1; ++i) if (!dfn[i]) Tarjan(i);
ans = 0;
for (i = 1; i <= n; ++i)
for (j = 1; j <= m; ++j)
if (mp[i][j] == '.')
mark[id[i][j]] |= (mp[i - 1][j] != '.' && mp[i + 1][j] != '.' && mp[i][j - 1] != '.' && mp[i][j + 1] != '.');
for (e = first[0]; ~e; e = edge[e].next) if (bel[v = edge[e].to] == bel[0]) mark[v] = 1;
for (e = first[idx + 1]; ~e; e = edge[e].next) if (bel[v = edge[e].to] == bel[idx + 1]) mark[v] = 1;
for (i = 1; i <= n; ++i)
for (j = 1; j <= m; ++j)
if (mark[id[i][j]]) ++ans;
ans ? puts("WIN") : puts("LOSE");
for (i = 1; i <= n; ++i)
for (j = 1; j <= m; ++j)
if (mark[id[i][j]]) printf("%d %d\n", i, j);
return 0;
}