BZOJ3168: [Heoi2013]钙铁锌硒维生素
传送门
题意
给定一个满秩的矩阵 \(A\) ,另一个矩阵 \(B\)
对于 \(A\) 的每个行向量 \(A_i\) 找到一个匹配 \(B\) 的行向量 \(B_{p_i}\)
使得 \(A_i\) 替换成 \(B_{p_i}\) 后的矩阵 \(A'\) 仍然满秩
Sol
如果 \(B_{p_i}\) 能替换 \(A_i\),那么说明存在一个向量 \(\lambda\) 使得 \(\lambda \times A'=B_{p_i}\)
而 \(A\) 线性无关,只要 \(A\) 的元素表示 \(B_{p_i}\) 的线性组合中 \(A_i\) 的系数不为 \(0\) 就好了
所以只要求出系数矩阵 \(C\),使得 \(C\times A=B\)
然后对于不为 \(0\) 的 \(C_{i,j}\),将 \(j\) 向 \(i\) 连边,求这个二分图的字典序最小的完备匹配就好了
求 \(C\) 可以矩阵求逆实现,\(C=B\times A^{-1}\)
求二分图的字典序最小的完备匹配,可以先跑一遍匈牙利算法
然后在这个基础上再跑一次增广,贪心的匹配最小的,只改变匹配比当前点大的匹配边
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod(10007);
int a[305][605], b[305][305], d[305][305], c[305][305];
int idx, n, ans, match[305], chos[305], cnt, vis[305];
inline int Pow(int x, int y) {
register int ret = 1;
for (; y; y >>= 1, x = x * x % mod)
if (y & 1) ret = ret * x % mod;
return ret;
}
inline void GetInv() {
register int i, j, k, inv, m = n + n;
for (i = 1; i <= n; ++i) a[i][i + n] = 1;
for (i = 1; i <= n; ++i) {
for (j = i; j <= n; ++j)
if (a[j][i]) {
if (i != j) swap(a[i], a[j]);
break;
}
inv = Pow(a[i][i], mod - 2);
for (j = i; j <= m; ++j) a[i][j] = a[i][j] * inv % mod;
for (j = 1; j <= n; ++j)
if (i != j)
for (inv = a[j][i], k = i; k <= m; ++k) a[j][k] = (a[j][k] - a[i][k] * inv % mod + mod) % mod;
}
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j) d[i][j] = a[i][j + n];
}
inline void GetEdge() {
register int i, j, k;
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j)
for (k = 1; k <= n; ++k)
(c[i][k] += b[i][j] * d[j][k] % mod) %= mod;
}
int Dfs(int u) {
register int v;
for (v = 1; v <= n; ++v)
if (c[v][u] && vis[v] != idx) {
vis[v] = idx;
if (!match[v] || Dfs(match[v])) return chos[u] = v, match[v] = u, 1;
}
return 0;
}
int Change(int u, int rt) {
register int v;
for (v = 1; v <= n; ++v)
if (c[v][u] && vis[v] != idx) {
vis[v] = idx;
if (!match[v] || (match[v] > rt && Change(match[v], rt))) return chos[u] = v, match[v] = u, 1;
}
return 0;
}
int main() {
scanf("%d", &n);
register int i, j;
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j) scanf("%d", &a[i][j]);
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j) scanf("%d", &b[i][j]);
GetInv(), GetEdge();
for (i = 1; i <= n; ++i) ++idx, ans += Dfs(i);
if (ans != n) return puts("NIE"), 0;
puts("TAK");
for (i = 1; i <= n; ++i) ++idx, match[chos[i]] = 0, chos[i] = 0, Change(i, i);
for (i = 1; i <= n; ++i) printf("%d\n", chos[i]);
return 0;
}