基础高等数学

\(\text{Some Definitions}\)

Gamma函数

\(\Gamma(x)=\int_0^{+\infty}t^{x-1}e^{-t}\mathrm{d}t\qquad(x>0)\)

性质:
\(\Gamma(x+1)=x\Gamma(x)\)
\(\forall x\in(0,1),\Gamma(x)\Gamma(1-x)=\frac{\pi}{\sin\pi x}\)
\(\Gamma(x+1)\sim\sqrt{2\pi x}(\frac xe)^x\)

Betta函数

\(\mathrm B(x,y)=\int_0^1t^{x-1}(1-t)^{y-1}\mathrm d t\quad(\operatorname{Re}(x),\operatorname{Re}(y)>0)\)

性质:
\(\mathrm B(x,y)=\mathrm B(y,x)\)
\(\mathrm B(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}=\frac{(x-1)!(y-1)!}{(x+y-1)!}\)
\(\mathrm B(x+1,y)=\frac x{x+y}\mathrm B(x,y)\)
\(\mathrm B(x,y+1)=\frac y{x+y}\mathrm B(x,y)\)

差商

给定\(n+1\)个点\((x_0,y_0),\cdots,(x_n,y_n)\),前差商如下定义:
\([y_i]=y_i,[y_i,\cdots,y_j]=\frac{[y_{i+1},\cdots,y_j]-[y_i,\cdots,y_{j-1}]}{x_j-x_i}\)
\(y_i=f(x_i)\),那么\([y_i,\cdots,y_j]\)也记做\(f[x_i,\cdots,x_j]\)
此时差商还有一个等价的定义:\(f[x_0,\cdots,x_n]=\sum\limits_{i=0}^n\frac{f(x_i)}{\prod\limits_{j\ne i}(x_i-x_j)}\)

性质:
\((f+g)[x_0,\cdots,x_n]=f[x_0,\cdots,x_n]+g[x_0,\cdots,x_n]\)
\((\lambda\cdot f)[x_0,\cdots,x_n]=\lambda\cdot f[x_0,\cdots,x_n]\)
\(\sigma:\{0,\cdots,n\}\rightarrow\{0,\cdots,n\}\)是一个排列,则\(f[x_0,\cdots,x_n]=f[x_{\sigma(0)},\cdots,x_{\sigma(n)}]\)

Leibniz公式

\((f\cdot g)[x_0,\cdots,x_n]=\sum\limits_{i=0}^nf[x_0,\cdots,x_i]g[x_i,\cdots x_n]\)

Taylor展开

\(f[x_0,\cdots,x_n]=\sum\limits_{i=0}^{+\infty}\frac{f^{(i)}(0)}{i!}p_i[x_0,\cdots,x_n]\)
其中\(p_i[x_0,\cdots,x_n]=\begin{cases}0&i<n\\1&i=n\\\sum\limits_{a\in\{0,n\}^{i-n}\wedge a_1\le\cdots\le a_{i-n}}\prod\limits_{j=1}^{i-n}x_{a_j}&i>n\end{cases}\)

矩阵形式

\(T_f(x_0,\cdots,x_n)\)(简记为\(T_fx\))满足\(T_fx_{i,j}=[i\le j]f[x_i,\cdots,x_j]\)
\(U(x_0,\cdots,x_n)\)(简记为\(Ux\))满足\(Ux_{i,j}=[i=j]+\prod\limits_{k=i}^{j-1}(x_j-x_k)\)
\(T_{f+g}x=T_fx+T_gx\)
\(T_{f\cdot g}x=T_fx\cdot T_gx\)
\(Ux\cdot\operatorname{diag}(f(x_0),\cdots,f(x_n))=T_fx\cdot Ux\)

\(\text{Some Theorems}\)

乘积求导公式

\((\prod\limits_{i=1}^nf_i)'=\sum\limits_{i=1}^nf_i'\prod\limits_{j\ne i}f_j=(\prod\limits_{i=1}^nf_i)(\sum\limits_{i=1}^n\frac{f_i'}{f_i})\)

Leibniz公式

\(uv^{(n)}=\sum\limits_{i=0}^n{n\choose i}u^{(i)}v^{(n-i)}\)

Lagrange乘数法

给定\(n\)个变量\(x_1,\cdots,x_n\),要求\(f\)在满足\(g_1,\cdots,g_m=0\)的条件下的极值。

\(h=f+\sum\limits_{i=1}^m\lambda_ig_i\),则\(f\)在满足\(g_1,\cdots,g_m=0\)的条件下取到极值的充要条件是\(\nabla h(x_1,\cdots,x_n,\lambda_1,\cdots,\lambda_m)=\mathbf0\)

Wallis公式

\(\lim\limits_{k\to\infty}[\frac{(2k)!!}{(2k-1)!!}]^2\frac1{2k+1}=\frac{\pi}2\)
\(\lim\limits_{k\to\infty}[\frac{((2k)!!)^2}{(2k)!}]^2\frac1{2k+1}=\frac{\pi}2\)
\(\lim\limits_{k\to\infty}[\frac{2^{2k}(k!)^2}{(2k)!}]^2\frac1{2k+1}=\frac{\pi}2\)
其中\(n!!=\begin{cases}\prod\limits_{i=1}^{\frac{n+1}2}(2i-1)&2\nmid n\\\prod\limits_{i=1}^{\frac n2}(2i)&2|n\end{cases}\)

Stirling公式

\(n!\sim\sqrt{2n\pi}(\frac ne)^n\)
但是注意\(\lim\limits_{n\to\infty}[n!-\sqrt{2n\pi}(\frac ne)^n]=\infty\)

Newton级数

\(f(x)=\sum\limits_{k=0}^{+\infty}{x-a\choose k}\Delta^kf(a)\)

Taylor级数

\(f(x)=\sum\limits_{n=0}^{+\infty}\frac{f^{(n)}(a)}{n!}(x-a)^n\)

Euler等式(五边形数定理)

\(\prod\limits_{n=1}^{+\infty}(1-x^n)=\sum\limits_{k=-\infty}^{+\infty }(-1)^kx^\frac{k(3k-1)}2\)

\(\text{Some Identities}\)

\(\frac1{(1-x)^{t+1}}=\sum\limits_{i=0}^{+\infty}{t+i\choose t}x^i\)

Lagrange多项式

给定\(n+1\)个点\((x_0,y_0),\cdots,(x_n,y_n)\)
定义Lagrange基多项式为\(\ell_i(x)=\prod\limits_{j\ne i}\frac {x-x_j}{x_i-x_j}\)
那么Lagrange形式的插值多项式为\(L(x)=\sum\limits_{i=0}^ny_i\ell_i(x)\)

重心形式

\(\ell(x)=\prod\limits_{i=0}^n(x-x_i)\),那么有\(\ell_i(x)=\frac{\ell(x)}{(x-x_i)\prod\limits_{j\ne i}(x_i-x_j)}\)
定义\(w_i=\frac1{\prod\limits_{j\ne i}(x_j-x_i)}\),那么有\(L(x)=\ell(x)\sum\limits_{i=0}^n\frac{w_iy_i}{x-x_i}\)

Newton多项式

给定\(n+1\)个点\((x_0,y_0),\cdots,(x_n,y_n)\)
定义Newton基多项式为\(n_0(x)=1,n_i(x)=\prod\limits_{j=0}^{i-1}(x-x_j)\)
那么Newton形式的插值多项式为\(N(x)=\sum\limits_{i=0}^n[y_0,\cdots,y_i]n_i(x)\)

posted @ 2019-12-30 15:52  Shiina_Mashiro  阅读(258)  评论(0编辑  收藏  举报