Luogu P2568 GCD

我们首先发现这样肯定是做不了的,所以我们枚举为\(gcd(x,y)=d\)\(d\)

然后考虑以下的性质:

\(gcd(x,y)=1 \Leftrightarrow gcd(px,py)=p(p为素数)\)

这个很显然吧,因此当我们枚举素数\(d\)时只需要计算\(x,y\in[1,\lfloor\frac{n}{d}\rfloor]\)\(gcd(x,y)=1\)有序\(x,y\)对数即可。

我们假定\(x<=y\),那么很容易结合欧拉函数的性质得出此时对答案的贡献为\(2\cdot\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\phi(i)-1\)

这个比较显然吧,假定\(i\in[1,\lfloor\frac{n}{d}\rfloor]\)为较大的那个,所以无序的对数就是\(\phi(i)\),由于有序所以乘2。最后注意一下\((1,1)\)会被计算两次要减去。

最后给欧拉函数记一个前缀和即可。

CODE

#include<cstdio>
#define RI register int
using namespace std;
const int P=1e7;
int prime[P+5],phi[P+5],cnt,n; long long ans,sum[P+5]; bool vis[P+5];
inline void resolve(int x)
{
    vis[1]=phi[1]=1; sum[1]=2; for (RI i=2;i<=n;++i)
    {
        if (!vis[i]) prime[++cnt]=i,phi[i]=i-1;
        for (RI j=1;j<=cnt&&i*prime[j]<=n;++j)
        {
            vis[i*prime[j]]=1; if (i%prime[j]) phi[i*prime[j]]=phi[i]*(prime[j]-1);
            else { phi[i*prime[j]]=phi[i]*prime[j]; break; }
        }
        sum[i]=sum[i-1]+(phi[i]<<1);
    }
}
int main()
{
    RI i; scanf("%d",&n); for (resolve(n),i=1;i<=cnt;++i)
    ans+=sum[n/prime[i]]-1; return printf("%lld",ans),0;
}
posted @ 2018-09-27 20:48  空気力学の詩  阅读(194)  评论(0编辑  收藏  举报