3.MySQL索引

1.索引:是一种用于快速查询和检索数据的数据结构,其本质可以看成是一种排序好的数据结构。
常见的索引结构有: B 树, B+树 和 Hash、红黑树。在 MySQL 中,无论是 Innodb 还是 MyIsam,都使用了 B+树作为索引结构。


2.索引优缺点:
优点: 使用索引可以大大加快数据的检索速度(大大减少检索的数据量), 这也是创建索引的最主要的原因。
    通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。
缺点: 创建索引和维护索引需要耗费许多时间。当对表中数据进行增删改时,如果数据有索引,那么索引也需要动态修改,会降低SQL执行效率。
    索引需要使用物理文件存储,也会耗费一定空间
使用索引一定能提高查询性能吗?
  大多数情况下,索引查询都是比全表扫描要快的。但是如果数据库的数据量不大,那么使用索引也不一定能够带来很大提升。
 
3.索引的底层数据结构:
  (1)Hash表:哈希表是键值对的集合,通过键(key)即可快速取出对应的值(value),因此哈希表可以快速检索数据(接近 O(1))。
为何能够通过 key 快速取出 value 呢? 原因在于 哈希算法(也叫散列算法)。通过哈希算法,我们可以快速找到 key 对应的 index,找到了 index 也就找到了对应的 value。

hash = hashfunc(key);index = hash % array_size;

  哈希算法有个 Hash 冲突 问题,也就是说多个不同的 key 最后得到的 index 相同。通常情况下,常用的解决办法是 链地址法,链地址法就是将哈希冲突数据存放在链表中。就比如 JDK1.8 之前 HashMap 就是通过链地址法来解决哈希冲突的。不过,JDK1.8 以后HashMap为了减少链表过长的时候搜索时间过长引入了红黑树。
  为了减少 Hash 冲突的发生,一个好的哈希函数应该“均匀地”将数据分布在整个可能的哈希值集合中。
  为什么 MySQL 没有使用哈希表作为索引的数据结构呢? 主要是因为 Hash 索引不支持顺序和范围查询假如我们要对表中的数据进行排序或者进行范围查询,那 Hash 索引可就不行了。并且,每次IO只能取一个。
  (2)B 树& B+树:B 树也称 B-树,全称为 多路平衡查找树,B+ 树是 B 树的一种变体。B 树和 B+树中的 B 是 Balanced (平衡)的意思。
   B 树& B+树两者有何异同呢?为什么MySQL用B+树作为索引?
   ·B 树的所有节点既存放键(key) 也存放 数据(data),而 B+树只有叶子节点存放 key 和 data,其他内节点只存放 key。
   ·B 树的叶子节点都是独立的;B+树的叶子节点有一条引用链指向与它相邻的叶子节点。
   ·B 树的检索的过程相当于对范围内的每个节点的关键字做二分查找,可能还没有到达叶子节点,检索就结束了。而 B+树的检索效率就很稳定了,任何查找都是从根节点到叶子节点的过程,叶子节点的顺序检索很明显。

   ·B+树的磁盘读写代价更小。B+树的内部节点并没有指向关键字具体信息的指针,因此其内部节点相对B树更小,通常B+树矮更胖,高度小查询产生的I/O更少。
  在 MySQL 中,MyISAM 引擎和 InnoDB 引擎都是使用 B+Tree 作为索引结构,但是,两者的实现方式不太一样             
  MyISAM 引擎中,索引文件和数据文件是分离的,B+Tree 叶节点的 data 域存放的是数据记录的地址。在索引检索的时候,首先按照 B+Tree 搜索算法搜索索引,如果指定的 Key 存在,则取出其 data 域的值,然后以 data 域的值为地址读取相应的数据记录。这被称为非聚集索引
  InnoDB 引擎中,其数据文件本身就是索引文件。其表数据文件本身就是按 B+Tree 组织的一个索引结构,树的叶节点 data 域保存了完整的数据记录。这个索引的 key 是数据表的主键,因此 InnoDB 表数据文件本身就是主索引。这被称为聚集索引而其余的索引都作为 辅助索引 ,辅助索引的 data 域存储相应记录主键的值而不是地址,这也是和 MyISAM 不同的地方。
  在根据主索引搜索时,直接找到 key 所在的节点即可取出数据;在根据辅助索引查找时,则需要先取出主键的值,再走一遍主索引。 因此,在设计表的时候,不建议使用过长的字段作为主键,也不建议使用非单调的字段作为主键,这样会造成主索引频繁分裂。

  (3)红黑树是一种自平衡二叉查找树,通过在插入和删除节点时进行颜色变换和旋转操作,使得树始终保持平衡状态,它具有以下特点:

  1. 每个节点非红即黑;
  2. 根节点总是黑色的;
  3. 每个叶子节点都是黑色的空节点(NIL 节点);
  4. 如果节点是红色的,则它的子节点必须是黑色的(反之不一定);
  5. 从根节点到叶节点或空子节点的每条路径,必须包含相同数目的黑色节点(即相同的黑色高度)。

4.索引分类:

(1)按照数据结构维度划分:
  B+Tree索引:MySQL 里默认和最常用的索引类型。只有叶子节点存储 value,非叶子节点只有指针和 key。存储引擎 MyISAM 和 InnoDB 实现 BTree 索引都是使用 B+Tree,但二者实现方式不一样(前面已经介绍了)。
  哈希索引:类似键值对的形式,一次即可定位。
  R树索引:一般不会使用,仅支持 geometry 数据类型,优势在于范围查找,效率较低,通常使用搜索引擎如 ElasticSearch 代替。
  全文索引:全文索引:对文本的内容进行分词,进行搜索。目前只有 CHAR、VARCHAR ,TEXT 列上可以创建全文索引。一般不会使用,效率较低,通常使用搜索引擎如 ElasticSearch 代替。
(2)按照底层存储方式划分:
·聚簇索引(聚集索引)索引结构和数据一起存放,InnoDB 中的主键索引就属于聚簇索引。
优点:
  查询速度非常快 :聚簇索引的查询速度非常的快,因为整个 B+树本身就是一颗多叉平衡树,叶子节点也都是有序的,定位到索引的节点,就相当于定位到了数据。相比于非聚簇索引,聚簇索引少了一次读取数据的 IO 操作。
  对排序查找和范围查找优化 :聚簇索引对于主键的排序查找和范围查找速度非常快。
缺点:
  依赖于有序的数据 :因为 B+树是多路平衡树,如果索引的数据不是有序的,那么就需要在插入时排序,如果数据是整型还好,否则类似于字符串或 UUID 这种又长又难比较的数据,插入或查找的速度肯定比较慢。
  更新代价大 : 如果对索引列的数据被修改时,那么对应的索引也将会被修改,而且聚簇索引的叶子节点还存放着数据,修改代价肯定是较大的,所以对于主键索引来说,主键一般都是不可被修改的。
·非聚簇索引(非聚集索引)索引结构和数据分开存放的索引,二级索引(辅助索引)属于非聚簇索引。MySQL的MyISAM引擎,不管主键还是非主键,使用的都是非聚簇索引。
优点:
  更新代价比聚集索引要小:非聚集索引的更新代价就没有聚集索引那么大了,非聚集索引的叶子节点是不存放数据的
缺点:
  跟聚集索引一样,非聚集索引也依赖于有序的数据
  可能会二次查询(回表) :这应该是非聚集索引最大的缺点了。当查到索引对应的指针或主键后,可能还需要根据指针或主键再到数据文件或表中查询。
(3)按照应用维度划分:
  ·主键索引:加速查询 + 列值唯一(不可以有 NULL)+ 表中只有一个。
  ·普通索引:仅加速查询。
  ·唯一索引:加速查询 + 列值唯一(可以有 NULL)。
  ·覆盖索引:一个索引包含(或者说覆盖)所有需要查询的字段的值。
  ·联合索引(组合索引、复合索引):多列值组成一个索引,专门用于组合搜索,其效率大于索引合并。
  ·全文索引:对文本的内容进行分词,进行搜索。目前只有 CHAR、VARCHAR ,TEXT 列上可以创建全文索引。一般不会使用,效率较低,通常使用搜索引擎如 ElasticSearch 代替。
 
5.主键索引:primary key数据表的主键列使用的就是主键索引。一张数据表有只能有一个主键,并且主键不能为 null,不能重复。
  在 MySQL 的 InnoDB 的表中,当没有显示的指定表的主键时,InnoDB 会自动先检查表中是否有唯一索引且不允许存在 null 值的字段,如果有,则选择该字段为默认的主键,否则 InnoDB 将会自动创建一个 6Byte 的自增主键。
 
二级索引:辅助索引,因为二级索引的叶子节点存储的数据是主键。也就是说,通过二级索引,可以定位主键的位置。
唯一索引,普通索引,前缀索引等索引属于二级索引。
·  唯一索引(Unique Key) :唯一索引也是一种约束。唯一索引的属性列不能出现重复的数据,但是允许数据为 NULL,一张表允许创建多个唯一索引。 建立唯一索引的目的大部分时候都是为了该属性列的数据的唯一性,而不是为了查询效率。
·  普通索引(Index) :普通索引的唯一作用就是为了快速查询数据,一张表允许创建多个普通索引,并允许数据重复和 NULL。
·  前缀索引(Prefix) :前缀索引只适用于字符串类型的数据。前缀索引是对文本的前几个字符创建索引,相比普通索引建立的数据更小, 因为只取前几个字符。
·  全文索引(Full Text) :全文索引主要是为了检索大文本数据中的关键字的信息,是目前搜索引擎数据库使用的一种技术。Mysql5.6 之前只有 MYISAM 引擎支持全文索引,5.6 之后 InnoDB 也支持了全文索引。
6.非聚簇索引一定回表查询吗(覆盖索引)? 非聚簇索引不一定回表查询。
·  覆盖索引:一个索引包含(或者说覆盖)所有需要查询的字段的值。
  覆盖索引即需要查询的字段正好是索引的字段,那么直接根据该索引,就可以查到数据了,而无需回表查询。
  如主键索引,如果一条 SQL 需要查询主键,那么正好根据主键索引就可以查到主键。
  再如普通索引,如果一条 SQL 需要查询 name,name 字段正好有索引, 那么直接根据这个索引就可以查到数据,也无需回表。
 
7.最左前缀匹配原则:
  最左前缀匹配原则指的是,在使用联合索引时,MySQL 会根据联合索引中的字段顺序,从左到右依次到查询条件中去匹配,如果查询条件中存在与联合索引中最左侧字段相匹配的字段,则就会使用该字段过滤一批数据,直至联合索引中全部字段匹配完成,或者在执行过程中遇到范围查询(如 >、<)才会停止匹配。对于 >=、<=、BETWEEN、like 前缀匹配的范围查询,并不会停止匹配。所以,我们在使用联合索引时,可以将区分度高的字段放在最左边,这也可以过滤更多数据
 
8.索引下推:是 MySQL 5.6 版本中提供的一项索引优化功能,可以在非聚簇索引遍历过程中,对索引中包含的字段先做判断,过滤掉不符合条件的记录,减少回表次数
 
9.正确使用索引的一些建议:
不为 NULL 的字段 :索引字段的数据应该尽量不为 NULL,因为对于数据为 NULL 的字段,数据库较难优化。如果字段频繁被查询,但又避免不了为 NULL,建议使用 0,1,true,false 这样语义较为清晰的短值或短字符作为替代。
被频繁查询的字段 :我们创建索引的字段应该是查询操作非常频繁的字段。
被作为条件查询的字段 :被作为 WHERE 条件查询的字段,应该被考虑建立索引。
频繁需要排序的字段 :索引已经排序,这样查询可以利用索引的排序,加快排序查询。
被经常频繁用于连接的字段 :经常用于连接的字段可能是一些外键列,对于外键列并不一定要建立外键,只是说该列涉及到表与表的关系。对于频繁被连接查询的字段,可以考虑建立索引,提高多表连接查询的效率。
 
被频繁更新的字段应该慎重建立索引虽然索引能带来查询上的效率,但是维护索引的成本也是不小的。 如果一个字段不被经常查询,反而被经常修改,那么就更不应该在这种字段上建立索引了。
限制每张表上的索引数量:
索引并不是越多越好,建议单张表索引不超过 5 个!
(1)索引可以增加查询效率,但同样也会降低插入和更新的效率,甚至有些情况下会降低查询效率。
(2)并且 MySQL 优化器在选择如何优化查询时,会根据统一信息,对每一个可以用到的索引来进行评估,以生成出一个最好的执行计划,如果同时有很多个索引都可以用于查询,就会增加 MySQL 优化器生成执行计划的时间,同样会降低查询性能。
 
尽可能的考虑建立联合索引而不是单列索引
 
MySQL 8.x 中实现的索引新特性:
·  隐藏索引:也称为不可见索引,不会被优化器使用,但是仍然需要维护,通常会软删除和灰度发布的场景中使用。主键不能设置为隐藏(包括显式设置或隐式设置)。
·  降序索引:之前的版本就支持通过 desc 来指定索引为降序,但实际上创建的仍然是常规的升序索引。直到 MySQL 8.x 版本才开始真正支持降序索引。另外,在 MySQL 8.x 版本中,不再对 GROUP BY 语句进行隐式排序。
·  函数索引:从 MySQL 8.0.13 版本开始支持在索引中使用函数或者表达式的值,也就是在索引中可以包含函数或者表达式。
posted @ 2023-09-18 21:46  壹索007  阅读(13)  评论(0编辑  收藏  举报