HashMap源码&底层数据结构分析
HashMap:线程不安全,key无序不可重复,value无序可重复 HashMap
可以存储 null 的 key 和 value,但 null 作为键只能有一个,null 作为值可以有多个。
JDK1.8 之前 HashMap 由 数组+链表 组成的,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的(“拉链法”解决冲突)。
JDK1.8 以后的 HashMap
在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为 8)(将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树)时,将链表转化为红黑树,以减少搜索时间。
HashMap
默认的初始化大小为 16。之后每次扩充,容量变为原来的 2 倍。并且, HashMap
总是使用 2 的幂作为哈希表的大小。
1.底层数据结构:
JDK1.8 之前
JDK1.8 之前 HashMap 底层是 数组和链表 结合在一起使用也就是 链表散列。HashMap 通过 key 的 hashCode 经过扰动函数处理过后得到 hash 值,然后通过
(n-1) & hash
判断当前元素存放的位置(这里的 n 指的是数组的长度),如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突。所谓扰动函数指的就是 HashMap 的 hash 方法。使用 hash 方法也就是扰动函数是为了防止一些实现比较差的 hashCode() 方法 换句话说使用扰动函数之后可以减少碰撞。
![](https://img2023.cnblogs.com/blog/1547002/202304/1547002-20230418162442503-2052297961.png)
JDK1.8 之后
相比于之前的版本,JDK1.8 以后在解决哈希冲突时有了较大的变化。当链表长度大于阈值(默认为 8)时,会首先调用treeifyBin()
方法。这个方法会根据 HashMap 数组来决定是否转换为红黑树。只有当数组长度大于或者等于 64 的情况下,才会执行转换红黑树操作,以减少搜索时间。否则,就是只是执行 resize()
方法对数组扩容。相关源码这里就不贴了,重点关注 treeifyBin()
方法即可!![](https://img2023.cnblogs.com/blog/1547002/202304/1547002-20230418162558130-24768307.png)
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
// 序列号
private static final long serialVersionUID = 362498820763181265L;
// 默认的初始容量是16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
// 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认的填充因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 当桶(bucket)上的结点数大于这个值时会转成红黑树
static final int TREEIFY_THRESHOLD = 8;
// 当桶(bucket)上的结点数小于这个值时树转链表
static final int UNTREEIFY_THRESHOLD = 6;
// 桶中结构转化为红黑树对应的table的最小容量
static final int MIN_TREEIFY_CAPACITY = 64;
// 存储元素的数组,总是2的幂次倍 哈希表
transient Node<k,v>[] table;
// 存放具体元素的集
transient Set<map.entry<k,v>> entrySet;
// 存放元素的个数,注意这个不等于数组的长度。
transient int size;
// 每次扩容和更改map结构的计数器//修改次数
transient int modCount;
// 临界值(容量*填充因子) 当实际大小超过临界值时,会进行扩容
int threshold;
// 加载因子
final float loadFactor;
}
2.影响HashMap性能的重要参数:
· DEFAULT_INITIAL_CAPACITY初始容量:16threshold = capacity * loadFactor,当 Size>=threshold的时候,那么就要考虑对数组的扩增了,也就是说,这个的意思就是 衡量数组是否需要扩增的一个标准。
4. 1.8中做了哪些优化?
(1)数组+链表改成了数组+链表或红黑树(2)链表的插入方式从头插法改成了尾插法
(3)扩容的时候1.7需要对原数组中的元素进行重新hash定位在新数组的位置,1.8采用更简单的判断逻辑,位置不变或索引+旧容量大小;
(4)在插入时,1.7先判断是否需要扩容,再插入,1.8是先插入后判断是否需要扩容
5.HashMap中的线程安全问题
- 在jdk1.7中,在多线程环境下,扩容时会造成死循环或数据丢失。
- 在jdk1.8中,在多线程环境下,会发生数据覆盖的情况
HashMap线程安全方面会出现什么问题
例如,如果两个线程同时调用 HashMap
的 put
方法,则可能会导致其中一个线程的更新被覆盖,或者两个线程同时调用 remove
方法,导致某些条目被意外删除。
(1)put的时候导致的多线程数据不一致(数据丢失),比如有两个线程A和B,首先A希望插入一个key-valu对到HashMap中,首先计算记录所要落到的 hash桶的索引坐标,然后获取到该桶里面的链表头结点,此时线程A的时间片用完了,而此时线程B被调度得以执行,和线程A一样执行,只不过线程B成功将记录插到了桶里面,假设线程A插入的记录计算出来的 hash桶索引和线程B要插入的记录计算出来的 hash桶索引是一样的,那么当线程B成功插入之后,线程A再次被调度运行时,它依然持有过期的链表头但是它对此一无所知,以至于它认为它应该这样做,如此一来就覆盖了线程B插入的记录,这样线程B插入的记录就凭空消失了,造成了数据不一致的行为。
(2)resize而引起死循环这种情况,发生在HashMap自动扩容时,当2个线程同时检测到元素个数超过 数组大小 ×负载因子。此时2个线程会在put()方法中调用了resize(),两个线程同时修改一个链表结构会产生一个循环链表(JDK1.7中,会出现resize前后元素顺序倒置的情况)。接下来再想通过get()获取某一个元素,就会出现死循环。
(3)JDK1.8后会有数值覆盖问题,putval()方法中,如果插入元素没有发生碰撞则直接插入。如果线程A和线程B同时进行put,刚好两条数据的hash值相同,如果线程A已经判断该位置数据为null,此时被挂起,线程B正常执行,并且正常插入数据,随后线程A继续执行就会将线程B的数据给覆盖。发生线程不安全。
6. 为什么HashMap的底层数组长度为何总是2的n次方
我们计算桶的位置完全可以使用hash % length,如果这个length是随便设定值的话当然也可以,但是如果你对它进行研究,设计一个合理的值得话,那么将对HashMap的性能发生翻天覆地的变化。
· 当length为2的N次方的时候,hash & (length-1) = hash % length hash = key.hashCode()
为什么&效率更高呢?因为位运算直接对内存数据进行操作,不需要转成十进制,所以位运算要比取模运算的效率更高
· 当length为2的N次方的时候,数据分布均匀,减少冲突
当length为奇数时,length-1为偶数,而偶数二进制的最后一位永远为0,那么与其进行 & 运算,得到的二进制数最后一位永远为0,那么结果一定是偶数,那么就会导致下标为奇数的桶永远不会放置数据,这就不符合我们均匀放置,减少冲突的要求了。
如果传入的initialCapacity不是2的次幂数,则HashMap会通过一通位移运算和或运算得到一个容量比传入的initialCapacity大的最小的2的次幂数,并将其作为HashMap的初始容量。例如传入7得到初始容量为8的HashMap,传入9得到初始容量为16的HashMap。
那么为什么默认是16呢?怎么不是4?不是8?
关于这个默认容量的选择,JDK并没有给出官方解释,那么这应该就是个经验值,既然一定要设置一个默认的2^n 作为初始值,那么就需要在效率和内存使用上做一个权衡。这个值既不能太小,也不能太大。太小了就有可能频繁发生扩容,影响效率。太大了又浪费空间,不划算。所以,16就作为一个经验值被采用了。
7.为什么1.8改用红黑树
比如某些人通过找到你的hash碰撞值,来让你的HashMap不断地产生碰撞,那么相同key位置的链表就会不断增长,当你需要对这个HashMap的相应位置进行查询的时候,就会去循环遍历这个超级大的链表,性能及其地下。java8使用红黑树来替代超过8个节点数的链表后,查询方式性能得到了很好的提升,从原来的是O(n)到O(logn)。8.HashMap 的put方法流程?
简要流程如下:
· 首先根据 key 的值计算 hash 值,找到该元素在数组中存储的下标;
· 如果数组是空的,则调用 resize 进行初始化;
· 如果没有哈希冲突直接放在对应的数组下标里;
· 如果冲突了,且 key 已经存在,就覆盖掉 value;
· 如果冲突后,发现该节点是红黑树,就将这个节点挂在树上;
· 如果冲突后是链表,判断该链表是否大于 8 ,如果大于 8 并且数组容量小于 64,就进行扩容;如果链表节点大于 8 并且数组的容量大于 64,则将这个结构转换为红黑树;否则,链表插入键值对,若 key 存在,就覆盖掉 value。
9.扩容机制
Hashmap 在容量超过负载因子所定义的容量之后,就会扩容。Java 里的数组是无法自动扩容的,方法是将 Hashmap 的大小扩大为原来数组的两倍,并将原来的对象放入新的数组中。
Hashmap的扩容机制及扩容后元素迁移-resize()
JDK7的元素迁移
JDK7中,HashMap的内部数据保存的都是链表。因此逻辑相对简单:在准备好新的数组后,map会遍历数组的每个“桶”,然后遍历桶中的每个Entity,重新计算其hash值(也有可能不计算),找到新数组中的对应位置,以头插法插入新的链表。
JDK8的元素迁移
JDK8则因为巧妙的设计,性能有了大大的提升:由于数组的容量是以2的幂次方扩容的,那么一个Entity在扩容时,新的位置要么在原位置,要么在原长度+原位置的位置。原因如下图:
数组长度变为原来的2倍,表现在二进制上就是多了一个高位参与数组下标确定。此时,一个元素通过hash转换坐标的方法计算后,恰好出现一个现象:最高位是0则坐标不变,最高位是1则坐标变为“10000+原坐标”,即“原长度+原坐标”。如下图:
因此,在扩容时,不需要重新计算元素的hash了,只需要判断最高位是1还是0就好了。
JDK8的HashMap还有以下细节:
JDK8在迁移元素时是正序的,不会出现链表转置的发生。
如果某个桶内的元素超过8个,则会将链表转化成红黑树,加快数据查询效率。
hash函数:https://www.cnblogs.com/zhengwang/p/8136164.html
11.HashMap 和 Hashtable 的区别 (都是实现了Map接口)
- 线程是否安全:
HashMap
是非线程安全的,Hashtable
是线程安全的,因为Hashtable
内部的方法基本都经过synchronized
修饰。(如果要保证线程安全的话就使用ConcurrentHashMap
) - 效率: 因为线程安全的问题,
HashMap
要比Hashtable
效率高一点。另外,Hashtable
基本被淘汰,不要在代码中使用它; - 对 Null key 和 Null value 的支持:
HashMap
可以存储 null 的 key 和 value,但 null 作为键只能有一个,null 作为值可以有多个;Hashtable 不允许有 null 键和 null 值,否则会抛出NullPointerException
。 - 初始容量大小和每次扩充容量大小的不同 : ① 创建时如果不指定容量初始值,
Hashtable
默认的初始大小为 11,之后每次扩充,容量变为原来的 2n+1。HashMap
默认的初始化大小为 16。之后每次扩充,容量变为原来的 2 倍。② 创建时如果给定了容量初始值,那么Hashtable
会直接使用你给定的大小,而HashMap
会将其扩充为 2 的幂次方大小(HashMap
中的tableSizeFor()
方法保证)。也就是说HashMap
总是使用 2 的幂作为哈希表的大小。 - 底层数据结构: JDK1.8 以后的
HashMap
在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为 8)时,将链表转化为红黑树(将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树),以减少搜索时间。Hashtable
没有这样的机制。
HashSet不是键值对结构,它是个无序集合,即存储和取出顺序可能不同。它没有索引,存储不重复元素,是非线程安全的。
// 默认构造函数。
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
}
// 包含另一个“Map”的构造函数
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);//下面会分析到这个方法
}
// 指定“容量大小”的构造函数
public HashMap(int initialCapacity) {}
// 指定“容量大小”和“加载因子”的构造函数
public HashMap(int initialCapacity, float loadFactor) {}
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
if (s > 0) {
// 判断table是否已经初始化
if (table == null) { // pre-size
// 未初始化,s为m的实际元素个数
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY);
// 计算得到的t大于阈值,则初始化阈值
if (t > threshold)
threshold = tableSizeFor(t);
}
// 已初始化,并且m元素个数大于阈值,进行扩容处理
else if (s > threshold)
resize();
// 将m中的所有元素添加至HashMap中
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}
put 方法:
HashMap 只提供了 put 用于添加元素,putVal 方法只是给 put 方法调用的一个方法,并没有提供给用户使用。
对 putVal 方法添加元素的分析如下:e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value)
将元素添加进入。如果不是就遍历链表插入(插入的是链表尾部)。![](https://img2023.cnblogs.com/blog/1547002/202304/1547002-20230418194859187-177539482.png)
treeifyBin()
方法。
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// table未初始化或者长度为0,进行扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中)
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
// 桶中已经存在元素(处理hash冲突)
else {
Node<K,V> e; K k;
// 判断table[i]中的元素是否与插入的key一样,若相同那就直接使用插入的值p替换掉旧的值e。
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 判断插入的是否是红黑树节点
else if (p instanceof TreeNode)
// 放入树中
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 不是红黑树节点则说明为链表结点
else {
// 在链表最末插入结点
for (int binCount = 0; ; ++binCount) {
// 到达链表的尾部
if ((e = p.next) == null) {
// 在尾部插入新结点
p.next = newNode(hash, key, value, null);
// 结点数量达到阈值(默认为 8 ),执行 treeifyBin 方法
// 这个方法会根据 HashMap 数组来决定是否转换为红黑树。
// 只有当数组长度大于或者等于 64 的情况下,才会执行转换红黑树操作,以减少搜索时间。否则,就是只是对数组扩容。
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
// 跳出循环
break;
}
// 判断链表中结点的key值与插入的元素的key值是否相等
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
// 相等,跳出循环
break;
// 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表
p = e;
}
}
// 表示在桶中找到key值、hash值与插入元素相等的结点
if (e != null) {
// 记录e的value
V oldValue = e.value;
// onlyIfAbsent为false或者旧值为null
if (!onlyIfAbsent || oldValue == null)
//用新值替换旧值
e.value = value;
// 访问后回调
afterNodeAccess(e);
// 返回旧值
return oldValue;
}
}
// 结构性修改
++modCount;
// 实际大小大于阈值则扩容
if (++size > threshold)
resize();
// 插入后回调
afterNodeInsertion(evict);
return null;
}
进行扩容,会伴随着一次重新 hash 分配,并且会遍历 hash 表中所有的元素,是非常耗时的。在编写程序中,要尽量避免 resize。
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
// 超过最大值就不再扩充了,就只好随你碰撞去吧
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 没超过最大值,就扩充为原来的2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else {
// signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 计算新的resize上限
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
// 把每个bucket都移动到新的buckets中
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else {
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// 原索引
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
// 原索引+oldCap
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 原索引放到bucket里
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 原索引+oldCap放到bucket里
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
/**
* 遍历HashMap
*/
// 1.获取Map中的所有键
System.out.println("-------foreach获取Map中所有的键:------");
Set<String> keys = map.keySet();
for (String key : keys) {
System.out.print(key+" ");
}
System.out.println();//换行
// 2.获取Map中所有值
System.out.println("-------foreach获取Map中所有的值:------");
Collection<String> values = map.values();
for (String value : values) {
System.out.print(value+" ");
}
System.out.println();//换行
// 3.得到key的值的同时得到key所对应的值
System.out.println("-------得到key的值的同时得到key所对应的值:-------");
Set<String> keys2 = map.keySet();
for (String key : keys2) {
System.out.print(key + ":" + map.get(key)+" ");
}
/**
* 如果既要遍历key又要value,那么建议这种方式,因为如果先获取keySet然后再执行map.get(key),map内部会执行两次遍历。
* 一次是在获取keySet的时候,一次是在遍历所有key的时候。
*/
// 当我调用put(key,value)方法的时候,首先会把key和value封装到
// Entry这个静态内部类对象中,把Entry对象再添加到数组中,所以我们想获取
// map中的所有键值对,我们只要获取数组中的所有Entry对象,接下来
// 调用Entry对象中的getKey()和getValue()方法就能获取键值对了
Set<java.util.Map.Entry<String, String>> entrys = map.entrySet();
for (java.util.Map.Entry<String, String> entry : entrys) {
System.out.println(entry.getKey() + "--" + entry.getValue());
}