[luogu1654]OSU!

update 9.20:本篇题解已经被\(yyb\)证明是出锅的

这道题目最后的式子看上去是很简单的,不到10行就码完了,但是求式子的过程并没有那么简单。

很容易想到一种枚举思路:
因为每一段连续的1都有一个结束位置,我们从左到右枚举这个结束位置,
再枚举在这个位置结束的连续的1的长度,最后把贡献加入答案。

用式子写出来就是:

\[\sum_{i=1}^{n}\sum_{j=1}^{i}p_{i,j}j^3 \]

其中\(p_{i,j}\)表示结束位置为\(i\)的连续1串,其长度为\(j\)的概率

\(p_{i,j}\)可以预处理,这样做是\(O(n^2)\)

如何做到\(O(n)\)?考虑差分

我们先从一个简单的问题开始

现在你有一个取值为\([1,a]\)的整数随机数\(x\),它取\(i(1\le i\le a)\)的几率为\(p_i\),求\(E(x)\)
注意这里的\(p\)和前面的有所不同

根据数学知识我们知道\(E(x)=\sum_{i=1}^{a}i\times p_i\)

现在我们把这个求和式子做一下变换:

\[\sum_{i=1}^{a}i\times p_i=\sum_{i=1}^{a}\sum_{j=1}^{i}p_i=\sum_{i=1}^{a}\sum_{j=i}^{a}p_j \]

第一个等号显然
第二个等号交换了一下求和的顺序(如果不知道为什么的可以手画一下\(a\)较小的情况)

我们记\(\sum_{j=i}^{a}p_j=f_i\),它表示随机数的取值\(\ge i\)的概率

于是我们现在得到了另一个公式:

\[E(x)=\sum_{i=1}^{a}i\times p_i=\sum_{i=1}^{a}f_i \]

从另一个角度理解这个式子:
\(a=1\)时,显然\(E(x)=f_1=p_1\)
\(a=2\)时,我们如果继续使用\(f_1=p_1+p_2\)作为答案,会发现我们把\(x=2\)对答案的贡献给算少了;
本来应该是\(2\times p_2\),我们的原答案\((f_1)\)里只有一个\(p_2\)
因此我们还要加上一个\(f_2\),即\(f_1+f_2\)
\(a=3\)时,我们如果继续使用\(f_1+f_2=p_1+2p_2+2p_3\)作为答案,
会发现我们把\(x=3\)对答案的贡献给算少了;
本来应该是\(3\times p_3\),我们的原答案\((f_1+f_2)\)里只有两个\(p_3\)
因此我们还要加上一个\(f_3\),即\(f_1+f_2+f_3\)
故每当\(x\)的可能取值范围扩大后,我们就需要对于原来我们给出的期望进行补足

回到这道题,我们要算的是\(\sum_{i=1}^{n}\sum_{j=1}^{i}p_{i,j}j^3\)
这里的\(p\)是前面的\(p_{i,j}\)
我们可以换成求\(f_{i,j}\),它表示结束位置为\(i\)的连续1串,其长度\(\ge j\)的概率

如果我们只要算\(\sum_{i=1}^{n}\sum_{j=1}^{i}p_{i,j}j\)(没有了立方)
那么答案变成\(\sum_{i=1}^{n}\sum_{j=1}^{i}f_{i,j}\)
而这里的\(f_{i,j}\)非常好求,就是\(\prod_{k=i-j+1}^{i}s_k\),
\(s_k\)表示第\(k\)个位置为\(1\)的概率
因为只要\((i-j+1)\)\(i\)的位置全部为\(1\),那么连续1串的长度一定\(\ge j\)

如果我们记\(x_i=\sum_{j=1}^{i}f_{i,j}\),那么递推式就是

\[x_i=p_ix_{i-1}+p_i \]

这就是大家喜闻乐见的第一个递推式

但是我们现在要算\(Ans=\sum_{i=1}^{n}\sum_{j=1}^{i}p_{i,j}j^3\)
使用前面的补足思想,当\(x=i+1\)的时候,\(x^3\)需要对之前补足的贡献是\((3i^2+3i+1)\)
因此

\[Ans=\sum_{i=1}^{n}\sum_{j=1}^{i}p_{i,j}j^3=\sum_{i=1}^{n}\sum_{j=1}^{i}[3(j-1)^2+3(j-1)+1]f_{i,j} \]

首先记\(y_i=\sum_{j=1}^{i}j^2p_{i,j}=\sum_{j=1}^{i}[2\times (j-1)+1]f_{i,j}\)
由于\(y_{i-1}\times p_i=\sum_{j=1}^{i-1}[2\times (j-1)+1]f_{i-1,j}\times p_i=\sum_{j=2}^{i}[2\times (j-2)+1]f_{i,j}\),
\(y_i-y_{i-1}\times p_i=\sum_{j=2}^{i}2f_{i,j}+f_{i,1}=2x_{i-1}p_i+p_i\)
因此\(y_i\)的递推式为

\[y_i=(y_{i-1}+2\times x_{i-1}+1)\times p_i \]

这就是大家喜闻乐见的第二个递推式

这样我们可以推到次数为\(3\)的情况,
\(dis_i=\sum_{j=1}^{i}p_{i,j}j^3=\sum_{j=1}^{i}f_{i,j}(3j^2+3j+1)\)
仿照\(y_i\)的方法我们有大家喜闻乐见的第三个递推式

\[dis_i=(dis_{i-1}+3\times y_{i-1}+3\times x_{i-1}+1)\times p_i \]

使用这三个递推式即可解决问题
虽然这三个递推式并不好理解
但难道我们只是为了\(AC\)数而做题的吗?

#include<bits/stdc++.h>
using namespace std;
int n;dd a[N],x[N],y[N],dis[N];
int main()
{
    n=read();
    for(RG int i=1;i<=n;i++){
        scanf("%lf",&a[i]);
        x[i]=(x[i-1]+1)*a[i];
        y[i]=(y[i-1]+2*x[i-1]+1)*a[i];
        dis[i]=dis[i-1]+(3*y[i-1]+3*x[i-1]+1)*a[i];
    }
    printf("%.1lf\n",dis[n]);
    return 0;
}
posted @ 2018-08-15 15:18  cjfdf  阅读(201)  评论(1编辑  收藏  举报