[BZOJ3283]运算器
description
solution
\(exbsgs+exlucas+excrt\)模板题。
写到手炸...
#include<bits/stdc++.h>
#define FL "3283"
using namespace std;
typedef long long ll;
const int N=1e5+10;
const int mod1=1e6+3;
const int mod2=998244353;
inline int read(){
int data=0,w=1;char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch<='9'&&ch>='0')data=data*10+ch-48,ch=getchar();
return data*w;
}
inline void file(){
freopen(FL".in","r",stdin);
freopen(FL".out","w",stdout);
}
namespace math{
inline int gcd(int a,int b){return b?gcd(b,a%b):a;}
inline void exgcd(int a,int b,int &x,int &y,int &d){
if(!b){d=a;x=1;y=0;return;}exgcd(b,a%b,y,x,d);y-=a/b*x;
}
inline int inv(int a,int p){
int x,y,d;exgcd(a,p,x,y,d);return (x%p+p)%p;
}
inline int poww(int a,int b,int mod){
int res=1;
for(;b;b>>=1,a=1ll*a*a%mod)
if(b&1)res=1ll*res*a%mod;
return res;
}
inline int excrt(int n,int *a,int *p){
for(int i=2,x,y,d,L;i<=n;i++){
exgcd(p[1],p[i],x,y,d);L=p[1]/d*p[i];
x=(1ll*x*(a[i]-a[1])%p[i]+p[i])%p[i];
a[1]=(1ll*x*p[1]%L+a[1])%L;p[1]=L;
}
return a[1];
}
}
using math::inv;
using math::poww;
using math::excrt;
using math::gcd;
namespace HASH{
int head[mod1],nxt[N],to[N],val[N],cnt;
inline void init(){memset(head,-1,sizeof(head));while(cnt)head[cnt--]=-1;}
inline void insert(int a,int b){
to[++cnt]=b;val[cnt]=a%mod2;
nxt[cnt]=head[a%mod1];head[a%mod1]=cnt;
}
inline int find(int a){
int r=-1;
for(int i=head[a%mod1];i!=-1;i=nxt[i])
if(a%mod2==val[i]){
if(r==-1)r=to[i];
else r=min(r,to[i]);
}
return r;
}
}
using HASH::init;
using HASH::insert;
using HASH::find;
namespace Exbsgs{
inline int logmod(int a,int b,int p){
int q=sqrt(p)+1;init();
for(int i=0,r=1%p;i<=q;i++,r=1ll*r*a%p)insert(r,i);
for(int i=0,v=inv(poww(a,q,p),p),r;i<=q;i++,b=1ll*b*v%p)
if(r=find(b),r!=-1)return i*q+r;
return -1;
}
inline int exbsgs(int a,int b,int p){
int cnt=0,r=1,d;
while(gcd(a,p)!=1){
if(r==b)return cnt;
d=gcd(a,p);
if(b%d)return -1;
b/=d;p/=d;r=1ll*r*(a/d)%p;cnt++;
}
return logmod(a,1ll*b*inv(r,p)%p,p)+cnt;
}
}
using Exbsgs::exbsgs;
namespace Exlucas{
int p[20],pk[20],fac[20][N],r[20],tot;
inline void fact(int x){
tot=0;
for(int i=2;i*i<=x;i++)
if(x%i==0){
p[++tot]=i;pk[tot]=1;
while(x%i==0)pk[tot]*=i,x/=i;
}
if(x>1)tot++,p[tot]=pk[tot]=x;
for(int i=1;i<=tot;i++){
fac[i][0]=1;
for(int j=1;j<=pk[i];j++)
fac[i][j]=1ll*fac[i][j-1]*(j%p[i]?j:1)%pk[i];
}
}
inline int mul(int i,int n){
int res=poww(fac[i][pk[i]],n/pk[i],pk[i]);
for(int j=n/pk[i]*pk[i]+1;j<=n;j++)
res=1ll*res*(j%p[i]?j:1)%pk[i];
return 1ll*res*(n/p[i]?mul(i,n/p[i]):1)%pk[i];
}
inline int exlucas(int n,int m,int mod){
if(n<m)return 0;fact(mod);
for(int i=1;i<=tot;i++){
int a=mul(i,n),b=mul(i,m),c=mul(i,n-m),k=0;
for(int j=n;j;j/=p[i])k+=j/p[i];
for(int j=m;j;j/=p[i])k-=j/p[i];
for(int j=n-m;j;j/=p[i])k-=j/p[i];
r[i]=1ll*a*inv(b,pk[i])%pk[i]*inv(c,pk[i])%pk[i]*poww(p[i],k,pk[i])%pk[i];
}
return excrt(tot,r,pk);
}
}
using Exlucas::exlucas;
int main()
{
init();
int T=read();
while(T--){
int opt=read(),y=read(),z=read(),p=read(),r;
if(opt==1)printf("%d\n",poww(y,z,p));
if(opt==2){
r=exbsgs(y,z,p);
r==-1?puts("Math Error"):printf("%d\n",r);
}
if(opt==3)printf("%d\n",exlucas(z,y,p));
}
return 0;
}