《大话数据结构》第2章 算法基础 2.9 算法的时间复杂度
摘要:
2.9 算法的时间复杂度2.9.1算法时间复杂度定义 在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n) = O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。 这样用大写O()来体现算法时间复杂度的记法,我们称之为大O记法。 一般情况下,随着n的增大,T(n)增长最慢的算法为最优算法。 显然,由此算法时间复杂度的定义可知,我们的三个求和算法的时间复杂度分别 阅读全文
posted @ 2011-03-05 16:13 伍迷 阅读(7016) 评论(17) 推荐(7) 编辑