摘要:
题面 题解 有难度的计数$dp$ 我们先求出所有不降子序列的个数 这个可以用树状数组维护 删除的总方案数为$(n-i)!$种 但是可能我们删到非降之后,我们可能还会删 那么设通过删除操作让子序列变成长度为$i$的方案数为$g[i]$,其中合法的有$f[i]$种 容斥:$f[i] = g[i] - g 阅读全文
摘要:
题面 题解 很像最长不下降子序列对吧(废话) 设$up[i]$和$down[i]$分别表示$i$最大最小能取多少 注意到: $$ f[i] = max_j\left\{f[j]\right\} + 1 \\ a[j] \leq down[i],\; up[j] \leq a[i],\; j \leq 阅读全文
摘要:
题面 题解 众所周知,最长公共子序列的$dp$是$\text{O}(n^2)$, 但是每一个数字只重复$5$遍,那么我们暴力匹配$25n$个点对 那么我们就可以将其变成求最长上升子序列 用二分栈或者树状数组求解即可。 代码 阅读全文
摘要:
题面 题解 任意两个障碍不在同一列 要求你放$N$个棋子也满足每行只有一枚棋子,每列只有一枚棋子的限制。 这™不就是个错排吗??? $$ h_i=(n-1)(h_{i-1}+h_{i-2}),h_1=0,h_2=1 $$ 写个高精度就好了。。。 代码 阅读全文
摘要:
题面 题解 对字符串一脸懵的我肯定只能用$FFT$这种暴力方法水过啊。。。 将后面那个字符串翻转一下,对$\text{AGCT}$分别统计,用$FFT$就可以啦 代码 阅读全文
该文被密码保护。 阅读全文
摘要:
题面 题解 线性常系数齐次递推sb板子题 $a_n=233a_{n-1}+666a_{n-2}$的特征方程为 $$ x^2=233x+666 \\ x^2-233x+666=0 \\ x_1=\frac{233+\sqrt{56953}}2,x_2=\frac{233-\sqrt{56953}}2 阅读全文
摘要:
是什么 树链剖分 与轻重链剖分相似,只不过是按照深度进行剖分的 它的应用与$\text{dsu on tree}$十分相似,能高效合并子树的信息 性质 性质1 所有链长之和为节点数 证明:每个点在且仅在一条链中 性质2 任意一个点$k$级祖先所在长链的长度一定大于等于$k$ 假如$y$所在长链的长度 阅读全文