【HEOI2016】排序
题面
题解
这题好神仙啊。。。
我们二分这个位置上的数,
然后当\(val[i] \geq mid\)的位置设为\(1\),否则为\(0\)
这样一来,这道题就变成了一个\(01\)序列排序,所以就可以用线段树实现\(log_2n\)排序(区间和以及区间覆盖)
由于这个数列是\(1-n\)的全排列,所以二分出的结果就是答案。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
inline int read()
{
int data = 0, w = 1;
char ch = getchar();
while(ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int maxn(1e5 + 10);
int n, m, q, tree[maxn << 2], lazy[maxn << 2], a[maxn], opt[maxn], L[maxn], R[maxn];
#define son(i) ((root << 1) | (i))
inline void build(int x, int root = 1, int l = 1, int r = n)
{
lazy[root] = 0;
if(l == r) { tree[root] = (a[l] >= x); return; }
int mid = (l + r) >> 1;
build(x, son(0), l, mid);
build(x, son(1), mid + 1, r);
tree[root] = tree[son(0)] + tree[son(1)];
}
inline void pushdown(int root, int l, int r, int mid)
{
if(l == r) lazy[root] = 0;
if(!lazy[root]) return;
lazy[son(0)] = lazy[son(1)] = lazy[root];
if(lazy[root] == 1) tree[son(0)] = mid - l + 1, tree[son(1)] = r - mid;
else tree[son(0)] = tree[son(1)] = 0;
lazy[root] = 0;
}
inline void update(int ql, int qr, int val, int root = 1, int l = 1, int r = n)
{
if(qr < l || r < ql) return;
if(ql <= l && r <= qr) { tree[root] = val * (r - l + 1); lazy[root] = val ? 1 : -1; return; }
int mid = (l + r) >> 1; pushdown(root, l, r, mid);
update(ql, qr, val, son(0), l, mid);
update(ql, qr, val, son(1), mid + 1, r);
tree[root] = tree[son(0)] + tree[son(1)];
}
inline int query(int ql, int qr, int root = 1, int l = 1, int r = n)
{
if(qr < l || r < ql) return 0;
if(ql <= l && r <= qr) return tree[root];
int mid = (l + r) >> 1; pushdown(root, l, r, mid);
return query(ql, qr, son(0), l, mid) + query(ql, qr, son(1), mid + 1, r);
}
inline bool check(int mid)
{
build(mid);
for(RG int i = 1; i <= m; i++)
{
int cnt = query(L[i], R[i]);
if(!opt[i])
update(R[i] - cnt + 1, R[i], 1),
update(L[i], R[i] - cnt, 0);
else
update(L[i], L[i] + cnt - 1, 1),
update(L[i] + cnt, R[i], 0);
}
return query(q, q);
}
int main()
{
#ifndef ONLINE_JUDGE
file(cpp);
#endif
n = read(); m = read();
for(RG int i = 1; i <= n; i++) a[i] = read();
for(RG int i = 1; i <= m; i++) opt[i] = read(), L[i] = read(), R[i] = read();
q = read(); int ans = 0;
for(RG int l = 1, r = n, mid; l <= r;)
{
mid = (l + r) >> 1;
if(check(mid)) ans = mid, l = mid + 1;
else r = mid - 1;
}
printf("%d\n", ans);
return 0;
}