CF510E Fox And Dinner
题面
题解
首先可以发现:由于\(a_i \geq 2\),所以质数肯定是被拆成一个奇数和一个偶数。
这样的话很类似一个二分图模型,所以考虑网络流。
当\(a_i\)是奇数时连边\((S, i, 2)\),当\(a_i\)是偶数时连边\((i, T, 2)\),表示一个点的邻居最多有两个点。
若\(a_i\)是奇数,\(a_j\)是偶数,\(a_i + a_j\)是质数,则连边\((i, j, 1)\)。
跑出来如果最大流不是\(n\)则不合法,否则直接暴力找环即可。
代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
inline int read()
{
int data = 0, w = 1; char ch = getchar();
while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int N(205), LIM(20010), M(20000), INF(0x3f3f3f3f);
struct edge { int next, to, cap; } e[N * N * 2];
int n, A[N], not_prime[LIM], head[N], e_num = -1, lev[N], cur[N], S, T;
inline void Add(int from, int to, int cap)
{
e[++e_num] = (edge) {head[from], to, cap}, head[from] = e_num;
e[++e_num] = (edge) {head[to], from, 0 }, head[to] = e_num;
}
void Init()
{
not_prime[1] = 1;
for (int i = 2; i <= M; i++) if (!not_prime[i])
for (int j = i * i; j <= M; j += i) not_prime[j] = 1;
}
int bfs()
{
std::queue<int> Q; Q.push(S);
memset(lev, 0, (T + 1) << 2), lev[S] = 1;
while (!Q.empty())
{
int x = Q.front(); Q.pop();
for (int i = head[x]; ~i; i = e[i].next)
{
int to = e[i].to; if (!e[i].cap || lev[to]) continue;
lev[to] = lev[x] + 1, Q.push(to);
}
}
return lev[T];
}
int dfs(int x, int f)
{
if (x == T || !f) return f;
int ans = 0, cap;
for (int i = head[x]; ~i; i = e[i].next)
{
int to = e[i].to;
if (e[i].cap && lev[to] == lev[x] + 1)
{
cap = dfs(e[i].to, std::min(f - ans, e[i].cap));
e[i].cap -= cap, e[i ^ 1].cap += cap, ans += cap;
if (ans == f) break;
}
}
if (!ans) lev[x] = 0;
return ans;
}
int Dinic()
{
int ans = 0;
while (bfs()) memcpy(cur, head, (T + 1) << 2), ans += dfs(S, INF);
return ans;
}
std::vector<int> cir[N]; int tot, vis[N];
void find(int x)
{
if (1 <= x && x <= n) cir[tot].push_back(x); vis[x] = 1;
for (int i = head[x]; ~i; i = e[i].next)
if (!vis[e[i].to] && e[i | 1].cap == 1) find(e[i].to);
}
int main()
{
memset(head, -1, sizeof head);
Init(), n = read(), S = 0, T = n + 1; int p = 0, q = 0;
for (int i = 1; i <= n; i++) A[i] = read(), ((A[i] & 1) ? ++p : ++q);
if (p != q) return puts("Impossible"), 0;
for (int i = 1; i <= n; i++)
if (A[i] & 1) for (int j = (Add(S, i, 2), 1); j <= n; j++)
{ if (!not_prime[A[i] + A[j]]) Add(i, j, 1); }
else Add(i, T, 2);
if (Dinic() != n) return puts("Impossible"), 0;
for (int i = 1; i <= n; i++) if (!vis[i]) ++tot, find(i);
printf("%d\n", tot);
for (int i = 1; i <= tot; i++, puts(""))
{
printf("%lu ", cir[i].size());
for (int j : cir[i]) printf("%d ", j);
}
return 0;
}