SP1716 GSS3 - Can you answer these queries III
题面
题解
相信大家写过的传统做法像这样:(这段代码蒯自Karry5307的题解)
struct SegmentTree{
ll l,r,prefix,suffix,sum,maxn;
};
//...
inline void update(ll node)
{
ll res;
tree[node].sum=tree[node<<1].sum+tree[(node<<1)|1].sum;
tree[node].maxn=max(tree[node<<1].maxn,tree[(node<<1)|1].maxn);
res=tree[node<<1].suffix+tree[(node<<1)|1].prefix;
tree[node].maxn=max(tree[node].maxn,res);
res=tree[node<<1].sum+tree[(node<<1)|1].prefix;
tree[node].prefix=max(tree[node<<1].prefix,res);
res=tree[node<<1].suffix+tree[(node<<1)|1].sum;
tree[node].suffix=max(tree[(node<<1)|1].suffix,res);
}
//...
有没有觉得这种做法有些麻烦
这里将一种硬核做法:动态dp
这个部分参考了GKxx 的博客
引入广义矩阵乘法:
\[\mathrm{C} = \mathrm{A} * \mathrm{B} \Leftrightarrow \mathrm{C}_{i,j} = \max_k\left\{\mathrm{A}_{i,k} + \mathrm{B}_{k,j}\right\}
\]
这样的话,我们首先写出动态规划的柿子:
设\(f_i\)表示以\(i\)结尾的最大子段和,\(g_i\)表示\([1,i]\)的最大子段和
于是
\[\begin{aligned} f_i &= \max(f_{i-1} + a_i, a_i) \\ g_i &= \max(g_{i-1}, f_i) \end{aligned}
\]
欢乐地写出矩乘的柿子:
\[\begin{bmatrix}f_{i-1} & g_{i-1} & 0\end{bmatrix} \times\begin{bmatrix}a_i & a_i & -\infty\\-\infty & 0 & -\infty\\a_i & a_i & 0\end{bmatrix}=\begin{bmatrix}f_i & g_i & 0\end{bmatrix}
\]
妙哉
因为矩阵乘法具有结合律,于是可以用线段树维护
当然资瓷单点修改和查询区间最大子段和了
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
#define clear(x, y) memset(x, y, sizeof(x));
inline int read()
{
int data = 0, w = 1;
char ch = getchar();
while(ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int maxn(50010), INF(0x3f3f3f3f);
template<typename T> inline void chkmax(T &a, const T &b)
{ return (void) (a < b ? a = b : 0); }
struct Matrix
{
int a[3][3];
inline int *operator [] (const int &x) { return a[x]; }
inline const int *operator [] (const int &x) const { return a[x]; }
} mat[maxn << 2]; int n, Q, a[maxn];
inline Matrix operator * (const Matrix &a, const Matrix &b)
{
Matrix c; for(int i = 0; i < 3; i++) c[i][0] = c[i][1] = c[i][2] = -INF;
for(int i = 0; i < 3; i++)
for(int j = 0; j < 3; j++)
for(int k = 0; k < 3; k++)
chkmax(c[i][k], a[i][j] + b[j][k]);
return c;
}
void build(int root = 1, int l = 1, int r = n)
{
if(l == r)
{
Matrix &o = mat[root]; o[0][1] = o[2][0] = o[2][1] = -INF;
o[0][0] = o[0][2] = o[1][0] = o[1][2] = a[l];
o[1][1] = o[2][2] = 0; return;
}
int mid = (l + r) >> 1, lson = root << 1, rson = lson | 1;
build(lson, l, mid), build(rson, mid + 1, r);
mat[root] = mat[lson] * mat[rson];
}
void update(int id, int v, int root = 1, int l = 1, int r = n)
{
if(l == r) return (void)
(mat[root][0][0] = mat[root][0][2]
= mat[root][1][0] = mat[root][1][2] = v);
int mid = (l + r) >> 1, lson = root << 1, rson = lson | 1;
if(id <= mid) update(id, v, lson, l, mid);
else update(id, v, rson, mid + 1, r);
mat[root] = mat[lson] * mat[rson];
}
Matrix query(int ql, int qr, int root = 1, int l = 1, int r = n)
{
if(ql <= l && r <= qr) return mat[root];
int mid = (l + r) >> 1, lson = root << 1, rson = lson | 1;
if(qr <= mid) return query(ql, qr, lson, l, mid);
if(ql > mid) return query(ql, qr, rson, mid + 1, r);
return query(ql, qr, lson, l, mid) * query(ql, qr, rson, mid + 1, r);
}
int main()
{
n = read();
for(RG int i = 1; i <= n; i++) a[i] = read();
build(); Q = read();
while(Q--)
{
int opt = read(), x = read(), y = read();
if(opt)
{
Matrix ans = query(x, y);
printf("%d\n", std::max(ans[1][0], ans[1][2]));
}
else a[x] = y, update(x, y);
}
return 0;
}