【AHOI2006】基因匹配
题面
题解
众所周知,最长公共子序列的$dp$是$\text{O}(n^2)$,
但是每一个数字只重复$5$遍,那么我们暴力匹配$25n$个点对
那么我们就可以将其变成求最长上升子序列
用二分栈或者树状数组求解即可。
代码
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#include<vector>
#define RG register
inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int maxn(20010), maxm(500010);
int n, m, a[maxm], c[maxm], f[maxm], cnt, ans;
std::vector<int> G[maxn];
void add(int x, int v) { while(x <= m) c[x] = std::max(c[x], v), x += x & -x; }
int query(int x)
{
int ans = 0;
while(x) ans = std::max(ans, c[x]), x -= x & -x;
return ans;
}
int main()
{
m = (n = read()) * 5;
for(RG int i = 1; i <= m; i++)
G[read()].push_back(i);
for(RG int i = 1, x; i <= m; i++)
{
x = read();
for(RG int j = 4; ~j; j--) a[++cnt] = G[x][j];
}
for(RG int i = 1; i <= cnt; i++)
f[i] = query(a[i] - 1) + 1, add(a[i], f[i]),
ans = std::max(ans, f[i]);
printf("%d\n", ans);
return 0;
}