特征向量和特征值

  最近在看nlp的相关论文时,特征向量和特征值的定义被频繁提及,但是由于自己的数学基础不够扎实,对这2个概念不是很理解,所以写个随笔来记录下。

  矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度都大多不同的新向量。在这个变换的过程中,原向量主要发生旋转、伸缩的变化。如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值。

  实际上,上述的一段话既讲了矩阵变换特征值及特征向量的几何意义(图形变换)也讲了其物理含义。物理的含义就是运动的图景:特征向量在一个矩阵的作用下作伸缩运动,伸缩的幅度由特征值确定。特征值大于1,所有属于此特征值的特征向量身形暴长;特征值大于0小于1,特征向量身形猛缩;特征值小于0,特征向量缩过了界,反方向到0点那边去了。
注意:常有教科书说特征向量是在矩阵变换下不改变方向的向量,实际上当特征值小于零时,矩阵就会把特征向量完全反方向改变,当然特征向量还是特征向量。我赞同特征向量不改变方向的说法:特征向量永远不改变方向,改变的只是特征值(方向反转特征值为负值了)。
  特征向量是线性不变量。
  所谓特征向量概念的亮点之一是不变量,这里叫线性不变量。因为我们常讲,线性变换啊线性变换,不就是把一根线(向量)变成另一根线(向量),线的变化的地方大多是方向和长度一块变。而一种名叫“特征向量”的向量特殊,在矩阵作用下不变方向只变长度。不变方向的特性就被称为线性不变量。

那么矩阵的特征值一般都用什么用呢?

(1)可以用在研究物理、化学领域的微分方程、连续的或离散的动力系统中。例如,在力学中,惯量的特征向量定义了刚体的主轴。惯量是决定刚体围绕质心转动的关键数据;

(2)被数学生态学家用来预测原始森林遭到何种程度的砍伐,会造成猫头鹰的种群灭亡;

(3)著名的图像处理中的PCA方法,选取特征值最高的k个特征向量来表示一个矩阵,从而达到降维分析+特征显示的方法,还有图像压缩的K-L变换。再比如很多人脸识别,数据流模式挖掘分析等方面。

(4)在谱系图论中,一个图的特征值定义为图的邻接矩阵A的特征值,或者(更多的是)图的拉普拉斯算子矩阵,Google的PageRank算法就是一个例子。

 

posted @ 2021-01-04 18:50  沐木琴  阅读(643)  评论(0编辑  收藏  举报