【算法】归并排序
归并排序是建立在归并操作上的一种有效的排序算法,1945年由约翰·冯·诺伊曼首次提出。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行。
一、基本思想
归并排序算法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
二、算法描述
归并排序可通过两种方式实现:
- 自上而下的递归
- 自下而上的迭代
一、递归法(假设序列共有n个元素):
①. 将序列每相邻两个数字进行归并操作,形成floor(n/2)个序列,排序后每个序列包含两个元素;
②. 将上述序列再次归并,形成floor(n/4)个序列,每个序列包含四个元素;
③. 重复步骤②,直到所有元素排序完毕。
二、迭代法
①. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
②. 设定两个指针,最初位置分别为两个已经排序序列的起始位置
③. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
④. 重复步骤③直到某一指针到达序列尾
⑤. 将另一序列剩下的所有元素直接复制到合并序列尾
三、代码实现
归并排序其实要做两件事:
- 分解:将序列每次折半拆分
- 合并:将划分后的序列段两两排序合并
因此,归并排序实际上就是两个操作,拆分+合并
如何合并?
L[first…mid]为第一段,L[mid+1…last]为第二段,并且两端已经有序,现在我们要将两端合成达到L[first…last]并且也有序。
首先依次从第一段与第二段中取出元素比较,将较小的元素赋值给temp[]
重复执行上一步,当某一段赋值结束,则将另一段剩下的元素赋值给temp[]
此时将temp[]中的元素复制给L[],则得到的L[first…last]有序
如何分解?
在这里,我们采用递归的方法,首先将待排序列分成A、B两组;然后重复对A、B序列
分组;直到分组后组内只有一个元素,此时我们认为组内所有元素有序,则分组结束。
这里我写了递归算法如下:
/**
* 归并排序(递归)
*
* ①. 将序列每相邻两个数字进行归并操作,形成floor(n/2)个序列,排序后每个序列包含两个元素;
* ②. 将上述序列再次归并,形成floor(n/4)个序列,每个序列包含四个元素;
* ③. 重复步骤②,直到所有元素排序完毕。
* @param arr 待排序数组
*/
public static int[] mergingSort(int[] arr){
if(arr.length <= 1) return arr;
int num = arr.length >> 1;
int[] leftArr = Arrays.copyOfRange(arr, 0, num);
int[] rightArr = Arrays.copyOfRange(arr, num, arr.length);
System.out.println("split two array: " + Arrays.toString(leftArr)
+ " And " + Arrays.toString(rightArr));
//不断拆分为最小单元,再排序合并
return mergeTwoArray(mergingSort(leftArr), mergingSort(rightArr));
}
private static int[] mergeTwoArray(int[] arr1, int[] arr2){
int i = 0, j = 0, k = 0;
//申请额外的空间存储合并之后的数组
int[] result = new int[arr1.length + arr2.length];
//选取两个序列中的较小值放入新数组
while(i < arr1.length && j < arr2.length){
if(arr1[i] <= arr2[j]){
result[k++] = arr1[i++];
}else{
result[k++] = arr2[j++];
}
}
//序列1中多余的元素移入新数组
while(i < arr1.length){
result[k++] = arr1[i++];
}
//序列2中多余的元素移入新数组
while(j < arr2.length){
result[k++] = arr2[j++];
}
System.out.println("Merging: " + Arrays.toString(result));
return result;
}
由上,长度为n的数组,最终会调用mergeSort函数2n-1次。通过自上而下的递归实现的归并排序,将存在堆栈溢出的风险。
以下是归并排序算法复杂度:
平均时间复杂度 | 最好情况 | 最坏情况 | 空间复杂度 |
---|---|---|---|
O(nlog₂n) | O(nlog₂n) | O(nlog₂n) | O(n) |
从效率上看,归并排序可算是排序算法中的”佼佼者”. 假设数组长度为n,那么拆分数组共需logn,又每步都是一个普通的合并子数组的过程, 时间复杂度为O(n), 故其综合时间复杂度为O(nlogn)。另一方面, 归并排序多次递归过程中拆分的子数组需要保存在内存空间, 其空间复杂度为O(n)。
和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是
O(n log n)
的时间复杂度。代价是需要额外的内存空间。
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek “源神”启动!「GitHub 热点速览」
· 微软正式发布.NET 10 Preview 1:开启下一代开发框架新篇章
· C# 集成 DeepSeek 模型实现 AI 私有化(本地部署与 API 调用教程)
· DeepSeek R1 简明指南:架构、训练、本地部署及硬件要求
· NetPad:一个.NET开源、跨平台的C#编辑器