_bzoj2005 [Noi2010]能量采集
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2005
令F(i)表示i | gcd(x, y)的对数,f(i)表示gcd(x, y) = i的对数,那么显然
f(i) = F(i) - f(2 * i) - f(3 * i) - ...
F(i)很好求,显然,F(i) = (n / i) * (m / i),除法向下取整。
之后就简单了~
#include <cstdio> #include <algorithm> const int maxn = 100005; int n, m, lmt; long long f[maxn], ans; int main(void) { scanf("%d%d", &n, &m); lmt = std::min(n, m); for (int i = lmt; i; --i) { f[i] = (long long)(n / i) * (long long)(m / i); for (int j = i << 1; j <= lmt; j += i) { f[i] -= f[j]; } ans += f[i] * ((i << 1) - 1); } printf("%lld\n", ans); return 0; }