python版 mapreduce 矩阵相乘

参考张老师的mapreduce 矩阵相乘。

转载请注明:来自chybot的学习笔记http://i.cnblogs.com/EditPosts.aspx?postid=4541939

下面是我用python版本的mapreduce 矩阵相乘。

矩阵相乘的思路详见张老师的博客,对于两个矩阵m1和m2,mapreduce的计算过程如下:

这里面最主要的地方是key的构成,map输出的key是相乘后的矩阵的下标,比如c[i][j] = sum(A[i][:]*B[:][j])。

注意:该实现知识矩阵相乘的一个思路的实现,并不适合真实场景,这里面map task只能为2(对应两个输入矩阵的文件),reduce task只能为1。

主要原因是由于这里面每个map程序都使用了全局变量,而每个reduce程序则默认矩阵相乘结果所需的值均在一个分片。

输入文件:

matrixA.txt
A#-1,0,2
A#1,3,1
matrixB.txt
B#3,1
B#2,1
B#1,0

maper程序:

#!/usr/bin/python
# -*-coding:utf-8 -*-

import sys

rowNum = 2
colNum = 2
rowIndexA = 1
rowIndexB = 1

def read_inputdata(splitstr):
    for line in sys.stdin:
#分割出矩阵名和矩阵的一行元素
yield line.split(splitstr) if __name__ == '__main__': for matrix, matrixline in read_inputdata('#'): if matrix == 'A':
# 分割出矩阵元素(使用,分隔),并用key,value输出
for i in range(rowNum): key = str(rowIndexA) + ',' + str(i+1) value = matrix + ':' j = 1 for element in matrixline.split(','): print '%s\t%s%s,%s' % (key, value, j, element) j += 1 rowIndexA += 1 elif matrix == 'B': for i in range(colNum): value = matrix + ':' j = 1 for element in matrixline.split(','): print '%s,%s\t%s%s,%s' % (i+1, j, value, rowIndexB, element) j = j+1 rowIndexB += 1 else: continue

reduce程序:

#!/usr/bin/python
# -*- coding:utf-8 -*-

import sys
from itertools import groupby
from operator import itemgetter

def read_input(splitstr):
    for line in sys.stdin:
        line = line.strip()
        if len(line) == 0: continue
        yield line.split(splitstr, 1)


def run():
    data = read_input('\t')
    for current_element, group in groupby(data, itemgetter(0)):
        try:
            matrixA = {}
            matrixB = {}
            result = 0
#获取A的一行和b的一列
for current_element, elements in group: matrix, index_value = elements.split(':') index, value = index_value.split(',') if matrix == 'A': matrixA[index] = int(value) else: matrixB[index] = int(value)
#计算相乘结果,注意一定要用下标,如果依赖mapreduce的sort可能会出错
for key in matrixA: result += matrixA[key]*matrixB[key] print '%s\t%s' % (current_element, result) except Exception: pass if __name__ == '__main__': run()

本地测试是否可行:

bogon:program xuguoqiang$ cat matrixA.txt matrixB.txt |python matrix_mapper.py |sort |python matrix_reducer.py 
1,1    -1
1,2    -1
2,1    10
2,2    4

使用hadoop streaming 运行mapred程序,结果如下:

bogon:hadoop-1.2.1 xuguoqiang$ bin/hadoop jar contrib/streaming/hadoop-streaming-1.2.1.jar  -D mapred.map.tasks=2 -D mapred.reduce.tasks=1 \
> -mapper /Users/xuguoqiang/hadoop-1.2.1/program/matrix_mapper.py  \
> -reducer /Users/xuguoqiang/hadoop-1.2.1/program/matrix_reducer.py  \
> -input /matrix/* \
> -output output5
packageJobJar: [/tmp/hadoop-xuguoqiang/hadoop-unjar2547149142116420858/] [] /var/folders/7_/jmj1yhgx7b1_2cg9w74h0q5r0000gn/T/streamjob1502134034482177499.jar tmpDir=null
15/05/31 16:37:06 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
15/05/31 16:37:06 WARN snappy.LoadSnappy: Snappy native library not loaded
15/05/31 16:37:06 INFO mapred.FileInputFormat: Total input paths to process : 2
15/05/31 16:37:06 INFO streaming.StreamJob: getLocalDirs(): [/tmp/hadoop-xuguoqiang/mapred/local]
15/05/31 16:37:06 INFO streaming.StreamJob: Running job: job_201505311232_0019
15/05/31 16:37:06 INFO streaming.StreamJob: To kill this job, run:
15/05/31 16:37:06 INFO streaming.StreamJob: /Users/xuguoqiang/hadoop-1.2.1/libexec/../bin/hadoop job  -Dmapred.job.tracker=hdfs://localhost:9001 -kill job_201505311232_0019
15/05/31 16:37:06 INFO streaming.StreamJob: Tracking URL: http://localhost:50030/jobdetails.jsp?jobid=job_201505311232_0019
15/05/31 16:37:07 INFO streaming.StreamJob:  map 0%  reduce 0%
15/05/31 16:37:11 INFO streaming.StreamJob:  map 100%  reduce 0%
15/05/31 16:37:20 INFO streaming.StreamJob:  map 100%  reduce 100%
15/05/31 16:37:22 INFO streaming.StreamJob: Job complete: job_201505311232_0019
15/05/31 16:37:22 INFO streaming.StreamJob: Output: output5
bogon:hadoop-1.2.1 xuguoqiang$ bin/hadoop fs -cat output5/*
1,1    -1
1,2    -1
2,1    10
2,2    4

 

可以看出,结果和在本地运行结果是相同的。

 

二、稀疏矩阵乘法

稀疏矩阵和矩阵乘法思想类似,只不过把之前一行的数据变成了多行来体现。

输入:

矩阵A

A#1,1,1
A#1,4,3
A#2,1,2
A#2,2,5
A#2,4,4
A#3,4,1
A#4,1,4
A#4,2,7
A#4,3,1
A#4,4,2

矩阵B

B#1,1,5
B#2,2,2
B#4,1,3
B#4,2,1

 

mapper程序:

#!/usr/bin/python
# -*-coding:utf-8 -*-

import sys

rowNum = 2
colNum = 4

def read_inputdata(splitstr):
    for line in sys.stdin:
        yield line.strip().split(splitstr)

if __name__ == '__main__':
    for matrix, matrixline in read_inputdata('#'):
        if matrix == 'A':
            for i in range(rowNum):
                index1, index2, element = matrixline.split(',')
                print '%s,%s\t%s:%s,%s' %  (index1, (i+1), matrix, index2, element)
        elif matrix == 'B':
            for i in range(colNum):
                index1, index2, element = matrixline.split(',')
                print '%s,%s\t%s:%s,%s' % (i+1, index2, matrix,index1, element)
        else: continue

reduce程序:

#!/usr/bin/python
# -*- coding:utf-8 -*-

import sys
from itertools import groupby
from operator import itemgetter

def read_input(splitstr):
    for line in sys.stdin:
        line = line.strip()
        if len(line) == 0: continue
        yield line.split(splitstr, 1)


def run():
    data = read_input('\t')
    for current_element, group in groupby(data, itemgetter(0)):
        try:
            matrixA = {}
            matrixB = {}
            result = 0
            for current_element, elements in group:
                matrix, index_value = elements.split(':')
                index, value = index_value.split(',')
                if matrix == 'A':
                    matrixA[index] = int(value)
                else:
                    matrixB[index] = int(value)
            for key in matrixA:
                if key in matrixB:
                    result += matrixA[key]*matrixB[key]
            print '%s\t%s' % (current_element, result)
        except Exception:
            pass

if __name__ == '__main__':
    run()

 

本地程序测试结果:

bogon:program xuguoqiang$ cat sparsematrixB.txt sparsematrixA.txt | python sparsematrix_mapper.py |sort |python sparsematrix_reduce.py 
1,1    14
1,2    3
2,1    22
2,2    14
3,1    3
3,2    1
4,1    26
4,2    16

hadoop测试结果:

bogon:hadoop-1.2.1 xuguoqiang$ bin/hadoop jar contrib/streaming/hadoop-streaming-1.2.1.jar -D mapred.map.tasks=2 -D mapred.reduce.tasks=1 -mapper /Users/xuguoqiang/hadoop-1.2.1/program/sparsematrix_mapper.py  -reducer /Users/xuguoqiang/hadoop-1.2.1/program/sparsematrix_reduce.py  -input /sparsematrix/* -output output
packageJobJar: [/tmp/hadoop-xuguoqiang/hadoop-unjar2334049571009138288/] [] /var/folders/7_/jmj1yhgx7b1_2cg9w74h0q5r0000gn/T/streamjob7964024689233782754.jar tmpDir=null
15/05/31 16:31:11 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
15/05/31 16:31:11 WARN snappy.LoadSnappy: Snappy native library not loaded
15/05/31 16:31:11 INFO mapred.FileInputFormat: Total input paths to process : 2
15/05/31 16:31:11 INFO streaming.StreamJob: getLocalDirs(): [/tmp/hadoop-xuguoqiang/mapred/local]
15/05/31 16:31:11 INFO streaming.StreamJob: Running job: job_201505311232_0018
15/05/31 16:31:11 INFO streaming.StreamJob: To kill this job, run:
15/05/31 16:31:11 INFO streaming.StreamJob: /Users/xuguoqiang/hadoop-1.2.1/libexec/../bin/hadoop job  -Dmapred.job.tracker=hdfs://localhost:9001 -kill job_201505311232_0018
15/05/31 16:31:11 INFO streaming.StreamJob: Tracking URL: http://localhost:50030/jobdetails.jsp?jobid=job_201505311232_0018
15/05/31 16:31:12 INFO streaming.StreamJob:  map 0%  reduce 0%
15/05/31 16:31:16 INFO streaming.StreamJob:  map 67%  reduce 0%
15/05/31 16:31:19 INFO streaming.StreamJob:  map 100%  reduce 0%
15/05/31 16:31:25 INFO streaming.StreamJob:  map 100%  reduce 33%
15/05/31 16:31:26 INFO streaming.StreamJob:  map 100%  reduce 100%
15/05/31 16:31:27 INFO streaming.StreamJob: Job complete: job_201505311232_0018
15/05/31 16:31:27 INFO streaming.StreamJob: Output: output

 

 

刚开始学习hadoop,加油!坚持!希望同道的人能给出建议。

 

参考:

粉丝日志:http://blog.fens.me/hadoop-mapreduce-matrix/

posted on 2015-05-31 14:30  chybot  阅读(2594)  评论(0编辑  收藏  举报